Skip to main content

Augmenting the Efficacy of Chemo- and Radio-Therapy by Nutraceuticals: Evidence from Pre-clinical and Clinical Trials

  • Chapter
  • First Online:
Nutraceuticals and Cancer
  • 1166 Accesses

Abstract

In recent years, dietary agents such as isoflavone genistein, curcumin, indole-3-carbinol (I3C), 3,3’-diindolylmethane (DIM), (-)-epigallocatechin-3-gallate (EGCG), resveratrol, and lycopene have received increased attention as anti-cancer agents. There has been a growing interest in investigating the effects of these dietary agents known as nutraceuticals on the inhibition of cancer cell growth in combination with chemotherapeutics or radiotherapy. The results from pre-clinical in vitro and in vivo experimental studies have demonstrated that the anti-cancer effects of chemotherapeutics and radiotherapy could be enhanced by combination treatment with nutraceuticals. Experimental evidence have also shown that the enhanced anti-cancer effects of nutraceuticals could in part due to deregulation of NF-κB, Akt, MDR, COX-2, AR, MAPK, and apoptotic signaling pathways that are known to play critical roles in cell survival and therapeutic resistance. In this chapter, we are summarizing the current evidence from pre-clinical and clinical trials demonstrating the effects and the molecular mechanisms of nutraceutical intervention in combination treatments, and we believe that this information would allow researcher to have a fresh look at the potential value of nutraceutical in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363–398

    PubMed  CAS  Google Scholar 

  • Ahmad IU, Forman JD, Sarkar FH et al (2010) Soy isoflavones in conjunction with radiation therapy in patients with prostate cancer. Nutr Cancer 62:996–1000

    Article  PubMed  CAS  Google Scholar 

  • Akimoto T, Nonaka T, Ishikawa H et al (2001) Genistein, a tyrosine kinase inhibitor, enhanced radiosensitivity in human esophageal cancer cell lines in vitro: possible involvement of inhibition of survival signal transduction pathways. Int J Radiat Oncol Biol Phys 50:195–201

    Article  PubMed  CAS  Google Scholar 

  • Ali S, Ahmad A, Banerjee S et al (2010a) Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res 70:3606–3617

    Article  PubMed  CAS  Google Scholar 

  • Ali S, Banerjee S, Schaffert JM et al (2010b) Concurrent inhibition of NF-kappaB, cyclooxygenase-2, and epidermal growth factor receptor leads to greater anti-tumor activity in pancreatic cancer. J Cell Biochem 110:171–181

    PubMed  CAS  Google Scholar 

  • Alvero AB, O’Malley D, Brown D et al (2006) Molecular mechanism of phenoxodiol-induced apoptosis in ovarian carcinoma cells. Cancer 106:599–608

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Zhang Y, Ali S et al (2005) Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res 65:9064–9072

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Zhang Y, Wang Z et al (2007) In vitro and in vivo molecular evidence of genistein action in augmenting the efficacy of cisplatin in pancreatic cancer. Int J Cancer 120:906–917

    Article  PubMed  CAS  Google Scholar 

  • Bao B, Ali S, Kong D et al (2011) Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS One 6:e17850

    Article  PubMed  CAS  Google Scholar 

  • Bava SV, Puliappadamba VT, Deepti A et al (2005) Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem 280:6301–6308

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj A, Sethi G, Vadhan-Raj S et al (2007) Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-kappaB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood 109:2293–2302

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar N, Li X, Chen Y et al (2009) 3,3'-diindolylmethane enhances the efficacy of butyrate in colon cancer prevention through down-regulation of survivin. Cancer Prev Res (Phila) 2: 581–589

    Article  CAS  Google Scholar 

  • Bishayee A (2009) Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res (Phila) 2:409–418

    Article  CAS  Google Scholar 

  • Busby MG, Jeffcoat AR, Bloedon LT et al (2002) Clinical characteristics and pharmacokinetics of purified soy isoflavones: single-dose administration to healthy men. Am J Clin Nutr 75:126–136

    PubMed  CAS  Google Scholar 

  • Cabrespine-Faugeras A, Bayet-Robert M, Bay JO et al (2010) Possible benefits of curcumin regimen in combination with taxane chemotherapy for hormone-refractory prostate cancer treatment. Nutr Cancer 62:148–153

    Article  PubMed  CAS  Google Scholar 

  • Chan MM, Fong D, Soprano KJ et al (2003) Inhibition of growth and sensitization to cisplatin-mediated killing of ovarian cancer cells by polyphenolic chemopreventive agents. J Cell Physiol 194:63–70

    Article  PubMed  CAS  Google Scholar 

  • Chen TC, Wang W, Golden EB et al (2011) Green tea epigallocatechin gallate enhances therapeutic efficacy of temozolomide in orthotopic mouse glioblastoma models. Cancer Lett 302:100–108

    Article  PubMed  CAS  Google Scholar 

  • Chendil D, Ranga RS, Meigooni D et al (2004) Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene 23:1599–607

    Article  PubMed  CAS  Google Scholar 

  • Chisholm K, Bray BJ, Rosengren RJ (2004) Tamoxifen and epigallocatechin gallate are synergistically cytotoxic to MDA-MB-231 human breast cancer cells. Anticancer Drugs 15:889–97

    Article  PubMed  CAS  Google Scholar 

  • Choueiri TK, Wesolowski R, Mekhail TM (2006) Phenoxodiol: isoflavone analog with antineoplastic activity. Curr Oncol Rep 8:104–107

    Article  PubMed  CAS  Google Scholar 

  • Chuang SE, Yeh PY, Lu YS et al (2002) Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappaB (NF-kappaB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem Pharmacol 63:1709–1716

    Article  PubMed  CAS  Google Scholar 

  • Colin D, Gimazane A, Lizard G et al (2009) Effects of resveratrol analogs on cell cycle progression, cell cycle associated proteins and 5fluoro-uracil sensitivity in human derived colon cancer cells. Int J Cancer 124:2780–2788

    Article  PubMed  CAS  Google Scholar 

  • Constantinou AI, Mehta R, Husband A (2003) Phenoxodiol, a novel isoflavone derivative, inhibits dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis in female Sprague-Dawley rats. Eur J Cancer 39:1012–1018

    Article  PubMed  CAS  Google Scholar 

  • Cover CM, Hsieh SJ, Cram EJ et al (1999) Indole-3-carbinol and tamoxifen cooperate to arrest the cell cycle of MCF-7 human breast cancer cells. Cancer Res 59:1244–1251

    PubMed  CAS  Google Scholar 

  • Davenport A, Frezza M, Shen M et al (2010) Celastrol and an EGCG pro-drug exhibit potent chemosensitizing activity in human leukemia cells. Int J Mol Med 25:465–470

    PubMed  CAS  Google Scholar 

  • Deeb D, Xu YX, Jiang H et al (2003) Curcumin (diferuloyl-methane) enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in LNCaP prostate cancer cells. Mol Cancer Ther 2:95–103

    PubMed  CAS  Google Scholar 

  • El-Rayes BF, Ali S, Ali IF et al (2006) Potentiation of the effect of erlotinib by genistein in pancreatic cancer: the role of Akt and nuclear factor-kappaB. Cancer Res 66:10553–10559

    Article  PubMed  CAS  Google Scholar 

  • Epelbaum R, Schaffer M, Vizel B et al (2010) Curcumin and gemcitabine in patients with advanced pancreatic cancer. Nutr Cancer 62:1137–1141

    Article  PubMed  CAS  Google Scholar 

  • Fischer L, Mahoney C, Jeffcoat AR et al (2004a) Clinical characteristics and pharmacokinetics of purified soy isoflavones: multiple-dose administration to men with prostate neoplasia. Nutr Cancer 48:160–170

    Article  PubMed  CAS  Google Scholar 

  • Fischer L, Mahoney C, Jeffcoat AR et al (2004b) Clinical characteristics and pharmacokinetics of purified soy isoflavones: multiple-dose administration to men with prostate neoplasia. Nutr Cancer 48:160–170

    Article  PubMed  CAS  Google Scholar 

  • Grainger EM, Schwartz SJ, Wang S et al (2008) A combination of tomato and soy products for men with recurring prostate cancer and rising prostate specific antigen. Nutr Cancer 60:145–154

    Article  PubMed  CAS  Google Scholar 

  • Harikumar KB, Kunnumakkara AB, Sethi G et al (2010) Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer. Int J Cancer 127:257–268

    PubMed  CAS  Google Scholar 

  • Heath EI, Heilbrun LK, Li J et al (2010) A phase I dose-escalation study of oral BR-DIM (BioResponse 3,3'- Diindolylmethane) in castrate-resistant, non-metastatic prostate cancer. Am J Transl Res 2:402–411

    PubMed  CAS  Google Scholar 

  • Hillman GG, Singh-Gupta V (2011) Soy isoflavones sensitize cancer cells to radiotherapy. Free Radic Biol Med 51:289–298

    Google Scholar 

  • Hillman GG, Forman JD, Kucuk O et al (2001) Genistein potentiates the radiation effect on prostate carcinoma cells. Clin Cancer Res 7:382–390

    PubMed  CAS  Google Scholar 

  • Hillman GG, Wang Y, Kucuk O et al (2004) Genistein potentiates inhibition of tumor growth by radiation in a prostate cancer orthotopic model. Mol Cancer Ther 3:1271–1279

    PubMed  CAS  Google Scholar 

  • Hwang JT, Ha J, Park OJ (2005) Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways. Biochem Biophys Res Commun 332:433–440

    Article  PubMed  CAS  Google Scholar 

  • Ichite N, Chougule MB, Jackson T et al (2009) Enhancement of docetaxel anticancer activity by a novel diindolylmethane compound in human non-small cell lung cancer. Clin Cancer Res 15:543–552

    Article  PubMed  CAS  Google Scholar 

  • Ivanov VN, Partridge MA, Johnson GE et al (2008) Resveratrol sensitizes melanomas to TRAIL through modulation of antiapoptotic gene expression. Exp Cell Res 314:1163–1176

    Article  PubMed  CAS  Google Scholar 

  • Javvadi P, Segan AT, Tuttle SW et al (2008) The chemopreventive agent curcumin is a potent radiosensitizer of human cervical tumor cells via increased reactive oxygen species production and overactivation of the mitogen-activated protein kinase pathway. Mol Pharmacol 73: 1491–1501

    Article  PubMed  CAS  Google Scholar 

  • Jazirehi AR, Bonavida B (2004) Resveratrol modifies the expression of apoptotic regulatory proteins and sensitizes non-Hodgkin’s lymphoma and multiple myeloma cell lines to paclitaxel-induced apoptosis. Mol Cancer Ther 3:71–84

    Article  PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R, Xu J et al (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  • Jian L, Lee AH, Binns CW (2007) Tea and lycopene protect against prostate cancer. Asia Pac J Clin Nutr 16(Suppl 1):453–457

    PubMed  CAS  Google Scholar 

  • Johnson GE, Ivanov VN, Hei TK (2008) Radiosensitization of melanoma cells through combined inhibition of protein regulators of cell survival. Apoptosis 13:790–802

    Article  PubMed  CAS  Google Scholar 

  • Kamat AM, Tharakan ST, Sung B et al (2009) Curcumin potentiates the antitumor effects of Bacillus Calmette-Guerin against bladder cancer through the downregulation of NF-kappaB and upregulation of TRAIL receptors. Cancer Res 69:8958–8966

    Article  PubMed  CAS  Google Scholar 

  • Kamsteeg M, Rutherford T, Sapi E et al (2003) Phenoxodiol–an isoflavone analog–induces apoptosis in chemoresistant ovarian cancer cells. Oncogene 22:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Kang HJ, Lee SH, Price JE et al (2009) Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB in breast cancer cells and potentiates the growth inhibitory effect of paclitaxel in a breast cancer nude mice model. Breast J 15:223–229

    Article  PubMed  CAS  Google Scholar 

  • Kao CL, Huang PI, Tsai PH et al (2009) Resveratrol-induced apoptosis and increased radiosensitivity in CD133-positive cells derived from atypical teratoid/rhabdoid tumor. Int J Radiat Oncol Biol Phys 74:219–228

    Article  PubMed  CAS  Google Scholar 

  • Khoshyomn S, Manske GC, Lew SM et al (2000) Synergistic action of genistein and cisplatin on growth inhibition and cytotoxicity of human medulloblastoma cells. Pediatr Neurosurg 33:123–131

    Article  PubMed  CAS  Google Scholar 

  • Khoshyomn S, Nathan D, Manske GC et al (2002) Synergistic effect of genistein and BCNU on growth inhibition and cytotoxicity of glioblastoma cells. J Neurooncol 57:193–200

    Article  PubMed  Google Scholar 

  • Kucuk O, Sarkar FH, Sakr W et al (2001) Phase II randomized clinical trial of lycopene supplementation before radical prostatectomy. Cancer Epidemiol Biomarkers Prev 10:861–868

    PubMed  CAS  Google Scholar 

  • Kucuk O, Sarkar FH, Djuric Z et al (2002) Effects of lycopene supplementation in patients with localized prostate cancer. Exp Biol Med (Maywood) 227:881–885

    CAS  Google Scholar 

  • Kumar NB, Cantor A, Allen K et al (2004) The specific role of isoflavones in reducing prostate cancer risk. Prostate 59:141–147

    Article  PubMed  CAS  Google Scholar 

  • Kumar NB, Krischer JP, Allen K et al (2007) A Phase II randomized, placebo-controlled clinical trial of purified isoflavones in modulating steroid hormones in men diagnosed with localized prostate cancer. Nutr Cancer 59:163–168

    Article  PubMed  CAS  Google Scholar 

  • Kumar NB, Besterman-Dahan K, Kang L et al (2008) Results of a Randomized Clinical Trial of the Action of Several Doses of Lycopene in Localized Prostate Cancer: Administration Prior to Radical Prostatectomy. Clin Med Urol 1:1–14

    PubMed  CAS  Google Scholar 

  • Kunnumakkara AB, Guha S, Krishnan S et al (2007) Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res 67:3853–3861

    Article  PubMed  CAS  Google Scholar 

  • Kunnumakkara AB, Diagaradjane P, Anand P et al (2009) Curcumin sensitizes human colorectal cancer to capecitabine by modulation of cyclin D1, COX-2, MMP-9, VEGF and CXCR4 expression in an orthotopic mouse model. Int J Cancer 125:2187–2197

    Article  PubMed  CAS  Google Scholar 

  • Kweon SH, Song JH, Kim TS (2010) Resveratrol-mediated reversal of doxorubicin resistance in acute myeloid leukemia cells via downregulation of MRP1 expression. Biochem Biophys Res Commun 395:104–110

    Article  PubMed  CAS  Google Scholar 

  • Lee R, Kim YJ, Lee YJ et al (2004) The selective effect of genistein on the toxicity of bleomycin in normal lymphocytes and HL-60 cells. Toxicology 195:87–95

    Article  PubMed  CAS  Google Scholar 

  • Lev-Ari S, Strier L, Kazanov D et al (2005) Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells. Clin Cancer Res 11:6738–6744

    Article  PubMed  CAS  Google Scholar 

  • Lev-Ari S, Vexler A, Starr A et al (2007) Curcumin augments gemcitabine cytotoxic effect on pancreatic adenocarcinoma cell lines. Cancer Invest 25:411–418

    Article  PubMed  CAS  Google Scholar 

  • Li N, Chen X, Liao J et al (2002) Inhibition of 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamsters by tea and curcumin. Carcinogenesis 23:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Ellis KL, Ali S et al (2004) Apoptosis-inducing effect of chemotherapeutic agents is potentiated by soy isoflavone genistein, a natural inhibitor of NF-kappaB in BxPC-3 pancreatic cancer cell line. Pancreas 28:e90–e95

    Article  PubMed  Google Scholar 

  • Li Y, Ahmed F, Ali S et al (2005) Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res 65:6934–6942

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Kucuk O, Hussain M et al (2006) Antitumor and antimetastatic activities of docetaxel are enhanced by genistein through regulation of osteoprotegerin/receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/MMP-9 signaling in prostate cancer. Cancer Res 66:4816–4825

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Wang Z, Kong D et al (2007) Regulation of FOXO3a/beta-catenin/GSK-3beta signaling by 3,3'-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in prostate cancer cells. J Biol Chem 282:21542–21550

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Wang Z, Kong D et al (2008) Regulation of Akt/FOXO3a/GSK-3beta/AR signaling network by isoflavone in prostate cancer cells. J Biol Chem 283:27707–27716

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Revalde JL, Reid G et al (2011a) Modulatory effects of curcumin on multi-drug resistance-associated protein 5 in pancreatic cancer cells. Cancer Chemother Pharmacol 68:603–610. Epub 2010

    Google Scholar 

  • Li Y, Kong D, Wang Z et al (2011b) Inactivation of AR/TMPRSS2-ERG/Wnt signaling networks attenuates the aggressive behavior of prostate cancer cells. Cancer Prev Res (Phila) 4:1495–1506

    Google Scholar 

  • Liang G, Tang A, Lin X et al (2010) Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer. Int J Oncol 37:111–123

    PubMed  CAS  Google Scholar 

  • Lin YW, Tsai MS, Weng SH et al (2011) Synergistic effect of curcumin and cisplatin via downregulation of thymidine phosphorylase and ERCC1. Mol Pharmacol 80:136–146

    Google Scholar 

  • Lu KH, Chen YW, Tsai PH et al (2009) Evaluation of radiotherapy effect in resveratrol-treated medulloblastoma cancer stem-like cells. Childs Nerv Syst 25:543–550

    Article  PubMed  Google Scholar 

  • Luo T, Wang J, Yin Y et al (2010) (-)-Epigallocatechin gallate sensitizes breast cancer cells to paclitaxel in a murine model of breast carcinoma. Breast Cancer Res 12:R8

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Wang J, Liu L et al (2011) Genistein potentiates the effect of arsenic trioxide against human hepatocellular carcinoma: role of Akt and nuclear factor-kappaB. Cancer Lett 301:75–84

    Article  PubMed  CAS  Google Scholar 

  • McGuire KP, Ngoubilly N, Neavyn M et al (2006) 3,3'-diindolylmethane and paclitaxel act synergistically to promote apoptosis in HER2/Neu human breast cancer cells. J Surg Res 132:208–213

    Article  PubMed  CAS  Google Scholar 

  • Messina MJ, Persky V, Setchell KD et al (1994) Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer 21:113–131

    Article  PubMed  CAS  Google Scholar 

  • Mohammad RM, Al-Katib A, Aboukameel A et al (2003) Genistein sensitizes diffuse large cell lymphoma to CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) chemotherapy. Mol Cancer Ther 2:1361–1368

    PubMed  CAS  Google Scholar 

  • Nakachi K, Matsuyama S, Miyake S et al (2000) Preventive effects of drinking green tea on cancer and cardiovascular disease: epidemiological evidence for multiple targeting prevention. Biofactors 13:49–54

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Yasunaga Y, Segawa T et al (2002) Curcumin down-regulates AR gene expression and activation in prostate cancer cell lines. Int J Oncol 21:825–830

    PubMed  CAS  Google Scholar 

  • Nihal M, Ahmad N, Mukhtar H et al (2005) Anti-proliferative and proapoptotic effects of (-)-epigallocatechin-3-gallate on human melanoma: possible implications for the chemoprevention of melanoma. Int J Cancer 114:513–521

    Article  PubMed  CAS  Google Scholar 

  • Nihal M, Ahsan H, Siddiqui IA et al (2009) (-)-Epigallocatechin-3-gallate (EGCG) sensitizes melanoma cells to interferon induced growth inhibition in a mouse model of human melanoma. Cell Cycle 8:2057–2063

    Article  PubMed  CAS  Google Scholar 

  • Notarbartolo M, Poma P, Perri D et al (2005) Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kB activation levels and in IAP gene expression. Cancer Lett 224:53–65

    Article  PubMed  CAS  Google Scholar 

  • Padhye S, Banerjee S, Chavan D et al (2009a) Fluorocurcumins as cyclooxygenase-2 inhibitor: molecular docking, pharmacokinetics and tissue distribution in mice. Pharm Res 26:2438–2445

    Article  PubMed  CAS  Google Scholar 

  • Padhye S, Yang H, Jamadar A et al (2009b) New difluoro Knoevenagel condensates of curcumin, their Schiff bases and copper complexes as proteasome inhibitors and apoptosis inducers in cancer cells. Pharm Res 26:1874–1880

    Article  PubMed  CAS  Google Scholar 

  • Patel BB, Sengupta R, Qazi S et al (2008) Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in mediating growth inhibition of colon cancer cells by modulating EGFR and IGF-1R. Int J Cancer 122:267–273

    Article  PubMed  CAS  Google Scholar 

  • Pereira MA, Grubbs CJ, Barnes LH et al (1996) Effects of the phytochemicals, curcumin and quercetin, upon azoxymethane-induced colon cancer and 7,12-dimethylbenz[a]anthracene-induced mammary cancer in rats. Carcinogenesis 17:1305–1311

    Article  PubMed  CAS  Google Scholar 

  • Raffoul JJ, Wang Y, Kucuk O et al (2006) Genistein inhibits radiation-induced activation of NF-kappaB in prostate cancer cells promoting apoptosis and G2/M cell cycle arrest. BMC Cancer 6:107

    Article  PubMed  CAS  Google Scholar 

  • Raffoul JJ, Banerjee S, Che M et al (2007a) Soy isoflavones enhance radiotherapy in a metastatic prostate cancer model. Int J Cancer 120:2491–2498

    Article  PubMed  CAS  Google Scholar 

  • Raffoul JJ, Banerjee S, Singh-Gupta V et al (2007b) Down-regulation of apurinic/apyrimidinic endonuclease 1/redox factor-1 expression by soy isoflavones enhances prostate cancer radiotherapy in vitro and in vivo. Cancer Res 67:2141–149

    Article  PubMed  CAS  Google Scholar 

  • Rahman KM, Banerjee S, Ali S et al (2009) 3,3'-Diindolylmethane enhances taxotere-induced apoptosis in hormone-refractory prostate cancer cells through survivin down-regulation. Cancer Res 69:4468–4475

    Article  PubMed  CAS  Google Scholar 

  • Sapi E, Alvero AB, Chen W et al (2004) Resistance of ovarian carcinoma cells to docetaxel is XIAP dependent and reversible by phenoxodiol. Oncol Res 14:567–578

    PubMed  CAS  Google Scholar 

  • Sarkar FH, Li Y (2004) Indole-3-carbinol and prostate cancer. J Nutr 134:3493S–348S

    PubMed  CAS  Google Scholar 

  • Sarkar FH, Li Y (2006) Using chemopreventive agents to enhance the efficacy of cancer therapy. Cancer Res 66:3347–3350

    Article  PubMed  CAS  Google Scholar 

  • Sarkar FH, Li Y, Wang Z et al (2010) The role of nutraceuticals in the regulation of Wnt and Hedgehog signaling in cancer. Cancer Metastasis Rev 29:383–394

    Article  PubMed  CAS  Google Scholar 

  • Satoh H, Nishikawa K, Suzuki K et al (2003) Genistein, a soy isoflavone, enhances necrotic-like cell death in a breast cancer cell treated with a chemotherapeutic agent. Res Commun Mol Pathol Pharmacol 113–114:149–158

    PubMed  Google Scholar 

  • Scarlatti F, Sala G, Ricci C et al (2007) Resveratrol sensitization of DU145 prostate cancer cells to ionizing radiation is associated to ceramide increase. Cancer Lett 253:124–130

    Article  PubMed  CAS  Google Scholar 

  • Shamim U, Hanif S, Albanyan A et al (2011) Resveratrol-induced apoptosis is enhanced in low pH environments associated with cancer. J Cell Physiol (Epub ahead of print)

    Google Scholar 

  • Shankar S, Ganapathy S, Chen Q et al (2008) Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis. Mol Cancer 7:16

    Article  PubMed  CAS  Google Scholar 

  • Shervington A, Pawar V, Menon S et al (2009) The sensitization of glioma cells to cisplatin and tamoxifen by the use of catechin. Mol Biol Rep 36:1181–1186

    Article  PubMed  CAS  Google Scholar 

  • Shiau RJ, Chen KY, Wen YD et al (2010) Genistein and beta-carotene enhance the growth-inhibitory effect of trichostatin A in A549 cells. Eur J Nutr 49:19–25

    Article  PubMed  CAS  Google Scholar 

  • Shukla S, Zaher H, Hartz A et al (2009) Curcumin inhibits the activity of ABCG2/BCRP1, a multidrug resistance-linked ABC drug transporter in mice. Pharm Res 26:480–487

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui IA, Malik A, Adhami VM et al (2008) Green tea polyphenol EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene 27:2055–2063

    Article  PubMed  CAS  Google Scholar 

  • Singh-Gupta V, Joiner MC, Runyan L et al (2011) Soy isoflavones augment radiation effect by inhibiting APE1/Ref-1 DNA repair activity in non-small cell lung Cancer. J Thorac Oncol 6:688–698

    Article  PubMed  Google Scholar 

  • Sreekanth CN, Bava SV, Sreekumar E et al (2011) Molecular evidences for the chemosensitizing efficacy of liposomal curcumin in paclitaxel chemotherapy in mouse models of cervical cancer. Oncogene 30:3139–3152

    Google Scholar 

  • Stearns ME, Amatangelo MD, Varma D et al (2010) Combination therapy with epigallocatechin-3-gallate and doxorubicin in human prostate tumor modeling studies: inhibition of metastatic tumor growth in severe combined immunodeficiency mice. Am J Pathol 177:3169–3179

    Article  PubMed  CAS  Google Scholar 

  • Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780

    Article  PubMed  CAS  Google Scholar 

  • Takimoto CH, Glover K, Huang X et al (2003) Phase I pharmacokinetic and pharmacodynamic analysis of unconjugated soy isoflavones administered to individuals with cancer. Cancer Epidemiol Biomarkers Prev 12:1213–1221

    PubMed  CAS  Google Scholar 

  • Taniguchi S, Fujiki H, Kobayashi H et al (1992) Effect of (-)-epigallocatechin gallate, the main constituent of green tea, on lung metastasis with mouse B16 melanoma cell lines. Cancer Lett 65:51–54

    Article  PubMed  CAS  Google Scholar 

  • Vaishampayan U, Hussain M, Banerjee M et al (2007) Lycopene and soy isoflavones in the treatment of prostate cancer. Nutr Cancer 59:1–7

    Article  PubMed  CAS  Google Scholar 

  • Wang J, He D, Zhang Q et al (2009) Resveratrol protects against Cisplatin-induced cardiotoxicity by alleviating oxidative damage. Cancer Biother Radiopharm 24:675–680

    Article  PubMed  CAS  Google Scholar 

  • Yashar CM, Spanos WJ, Taylor DD et al (2005) Potentiation of the radiation effect with genistein in cervical cancer cells. Gynecol Oncol 99:199–205

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Wei D, Liu J (2004) In vivo reversal of doxorubicin resistance by (-)-epigallocatechin gallate in a solid human carcinoma xenograft. Cancer Lett 208:179–186

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors’ work cited in this review article was funded by grants from the National Cancer Institute, NIH (5R01CA083695, 5R01CA108535, 5R01CA132794, and 5R01CA131151 awarded to FHS). We also thank Puschelberg and Guido foundations for their generous contribution to support our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlul H. Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Li, Y., Kong, D., Ahmad, A., Bao, B., Sarkar, F.H. (2012). Augmenting the Efficacy of Chemo- and Radio-Therapy by Nutraceuticals: Evidence from Pre-clinical and Clinical Trials. In: Sarkar, F. (eds) Nutraceuticals and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2630-7_16

Download citation

Publish with us

Policies and ethics