Skip to main content

Stem Cells and Leukemia

  • Chapter
  • First Online:
Stem Cells and Human Diseases

Abstract

In the last few years, the concepts governing our understanding of cancer have changed. In particular, the point of view that many leukemias are developmentally well-defined and, like in normal hematopoiesis, driven by a relatively small subset of cells called leukemia stem cells (LSCs) has become well-established. Recent studies suggest that defined subsets of LSCs within a tumor are capable of recreating the entire tumor and thus are responsible for relapse/recurrence and metastasis. This subset of “cancer stem cells” has been postulated to possess certain properties akin to those characterized in hematopoietic stem cells such as the capacity to (1) self-renew and to (2) give rise to non-self-renewing or “differentiated” progeny cells that make up the bulk of a tumor. Among the hematopoietic malignancies, acute myeloid leukemia (AML) is the best characterized thus far with respect to “leukemia stem cells” and much data support that the above two properties exist within a relatively rare subpopulation. Related ­studies have also demonstrated that leukemia stem cells are functionally distinct from bulk cells. These subsets are relatively quiescent or slowly cycling, whereas clonogenic progenitors (“differentiated” progeny which cannot self-renew) proliferate rapidly. Current antiproliferative chemotherapy usually affects these dividing progenitors and induces disease relapses as defined by decreased bulk tumor burden. Relapse is not uncommon however, suggesting the quiescent leukemia stem cells are not effectively removed from circulation by existing therapies. Therefore, new therapies that specifically target leukemia stem cells hold great promise for achieving the elusive cure for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALL:

Acute lymphoblastic leukemia

AML:

Acute myeloid leukemia

APL:

Acute promyelocytic leukemia

B-ALL:

B cell acute lymphoblastic leukemia

CLL:

Chronic lymphocytic leukemia

CML:

Chronic myeloid leukemia

CMP:

Common myeloid progenitor

CSC:

Cancer stem cell

GMP:

Granulocyte-macrophage progenitors

HH:

Hedgehog

HIF:

Hypoxia-inducible factor

HSC:

Hematopoietic stem cell

ICN:

Intracellular Notch

LSC:

Leukemia stem cells

MDS:

Myelodysplastic syndromes

MM:

Multiple myeloma

PcG:

Polycomb group

ROS:

Reactive oxygen species

T-ALL:

T cell acute lymphoblastic leukemia

References

  1. Hope KJ et al (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5:738–743

    PubMed  CAS  Google Scholar 

  2. Blagosklonny MV (2005) Carcinogenesis, cancer therapy and chemoprevention. Cell Death Differ 12:592–602

    PubMed  CAS  Google Scholar 

  3. Dick JE (2008) Stem cell concepts renew cancer research. Blood 112:4793–4807

    PubMed  CAS  Google Scholar 

  4. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    PubMed  CAS  Google Scholar 

  5. Bruce WR, Van Der Gaag H (1963) A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 199:79–80

    PubMed  CAS  Google Scholar 

  6. Lapidot T et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    PubMed  CAS  Google Scholar 

  7. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    PubMed  CAS  Google Scholar 

  8. Barabe F et al (2007) Modeling the initiation and progression of human acute leukemia in mice. Science 316:600–604

    PubMed  CAS  Google Scholar 

  9. Notta F et al (2011) Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 469:362–367

    PubMed  CAS  Google Scholar 

  10. Clark EA et al (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532–535

    PubMed  CAS  Google Scholar 

  11. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    PubMed  CAS  Google Scholar 

  12. Jamieson CH et al (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351:657–667

    PubMed  CAS  Google Scholar 

  13. Krivtsov AV et al (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442:818–822

    PubMed  CAS  Google Scholar 

  14. Somervaille TC, Cleary ML (2006) Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell 10:257–268

    PubMed  CAS  Google Scholar 

  15. Chen W et al (2008) Malignant transformation initiated by Mll-AF9: gene dosage and critical target cells. Cancer Cell 13:432–440

    PubMed  CAS  Google Scholar 

  16. Quintana E et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598

    PubMed  CAS  Google Scholar 

  17. Quintana E et al (2010) Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18:510–523

    PubMed  CAS  Google Scholar 

  18. Huntly BJ et al (2004) MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6:587–596

    PubMed  CAS  Google Scholar 

  19. Yilmaz OH et al (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441:475–482

    PubMed  CAS  Google Scholar 

  20. Kelly PN et al (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317:337

    PubMed  CAS  Google Scholar 

  21. Jordan CT et al (2000) The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14:1777–1784

    PubMed  CAS  Google Scholar 

  22. Blair A et al (1998) Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(−)/HLA-DR. Blood 92:4325–4335

    PubMed  CAS  Google Scholar 

  23. Blair A et al (1997) Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 89:3104–3112

    PubMed  CAS  Google Scholar 

  24. Blair A, Sutherland HJ (2000) Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp Hematol 28:660–671

    PubMed  CAS  Google Scholar 

  25. Dykstra B et al (2007) Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1:218–229

    PubMed  CAS  Google Scholar 

  26. Taussig DC et al (2008) Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood 112:568–575

    PubMed  CAS  Google Scholar 

  27. Taussig DC et al (2010) Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(−) fraction. Blood 115:1976–1984

    PubMed  CAS  Google Scholar 

  28. Eppert K et al (2011) Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 17(9):1086–1093

    PubMed  CAS  Google Scholar 

  29. Wang Y et al (2011) Targeting HIF1alpha eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8:399–411

    PubMed  CAS  Google Scholar 

  30. Wang Y et al (2010) The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 327:1650–1653

    PubMed  CAS  Google Scholar 

  31. Chi Y et al (2008) Acute myelogenous leukemia with t(6;9)(p23;q34) and marrow basophilia: an overview. Arch Pathol Lab Med 132:1835–1837

    PubMed  Google Scholar 

  32. Oancea C et al (2010) The t(6;9) associated DEK/CAN fusion protein targets a population of long-term repopulating hematopoietic stem cells for leukemogenic transformation. Leukemia 24:1910–1919

    PubMed  CAS  Google Scholar 

  33. Wojiski S et al (2009) PML-RARalpha initiates leukemia by conferring properties of self-renewal to committed promyelocytic progenitors. Leukemia 23:1462–1471

    PubMed  CAS  Google Scholar 

  34. Guibal FC et al (2009) Identification of a myeloid committed progenitor as the cancer-initiating cell in acute promyelocytic leukemia. Blood 114:5415–5425

    PubMed  CAS  Google Scholar 

  35. Saito Y et al (2010) Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat Biotechnol 28:275–280

    PubMed  CAS  Google Scholar 

  36. Vardiman JW et al (2002) The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100:2292–2302

    PubMed  CAS  Google Scholar 

  37. Holyoake T et al (1999) Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 94:2056–2064

    PubMed  CAS  Google Scholar 

  38. Jorgensen HG, Holyoake TL (2007) Characterization of cancer stem cells in chronic myeloid leukaemia. Biochem Soc Trans 35:1347–1351

    PubMed  CAS  Google Scholar 

  39. Lemoli RM et al (2009) Molecular and functional analysis of the stem cell compartment of chronic myelogenous leukemia reveals the presence of a CD34- cell population with intrinsic resistance to imatinib. Blood 114:5191–5200

    PubMed  CAS  Google Scholar 

  40. Minami Y et al (2008) BCR-ABL-transformed GMP as myeloid leukemic stem cells. Proc Natl Acad Sci USA 105:17967–17972

    PubMed  CAS  Google Scholar 

  41. Jaras M et al (2010) Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc Natl Acad Sci USA 107:16280–16285

    PubMed  CAS  Google Scholar 

  42. Koschmieder S et al (2005) Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood 105:324–334

    PubMed  CAS  Google Scholar 

  43. Li X et al (2004) Simultaneous demonstration of clonal chromosome abnormalities and apoptosis in individual marrow cells in myelodysplastic syndrome. Int J Hematol 80:140–145

    PubMed  Google Scholar 

  44. Giagounidis AA et al (2006) Biological and prognostic significance of chromosome 5q deletions in myeloid malignancies. Clin Cancer Res 12:5–10

    PubMed  CAS  Google Scholar 

  45. Ebert BL et al (2008) Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451:335–339

    PubMed  CAS  Google Scholar 

  46. Starczynowski DT et al (2010) Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 16:49–58

    PubMed  CAS  Google Scholar 

  47. Nilsson L et al (2000) Isolation and characterization of hematopoietic progenitor/stem cells in 5q-deleted myelodysplastic syndromes: evidence for involvement at the hematopoietic stem cell level. Blood 96:2012–2021

    PubMed  CAS  Google Scholar 

  48. Tehranchi R et al (2010) Persistent malignant stem cells in del(5q) myelodysplasia in remission. N Engl J Med 363:1025–1037

    PubMed  CAS  Google Scholar 

  49. Kerbauy DM et al (2004) Engraftment of distinct clonal MDS-derived hematopoietic precursors in NOD/SCID-beta2-microglobulin-deficient mice after intramedullary transplantation of hematopoietic and stromal cells. Blood 104:2202–2203

    PubMed  CAS  Google Scholar 

  50. Martin MG et al (2010) Limited engraftment of low-risk myelodysplastic syndrome cells in NOD/SCID gamma-C chain knockout mice. Leukemia 24:1662–1664

    PubMed  CAS  Google Scholar 

  51. Thanopoulou E et al (2004) Engraftment of NOD/SCID-beta2 microglobulin null mice with multilineage neoplastic cells from patients with myelodysplastic syndrome. Blood 103:4285–4293

    PubMed  CAS  Google Scholar 

  52. Cox CV et al (2007) Characterization of a progenitor cell population in childhood T-cell acute lymphoblastic leukemia. Blood 109:674–682

    PubMed  CAS  Google Scholar 

  53. Weng AP et al (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306:269–271

    PubMed  CAS  Google Scholar 

  54. Malyukova A et al (2007) The tumor suppressor gene hCDC4 is frequently mutated in human T-cell acute lymphoblastic leukemia with functional consequences for Notch signaling. Cancer Res 67:5611–5616

    PubMed  CAS  Google Scholar 

  55. O’Neil J et al (2007) FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 204:1813–1824

    PubMed  Google Scholar 

  56. Thompson BJ et al (2007) The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med 204:1825–1835

    PubMed  CAS  Google Scholar 

  57. Teitell MA, Pandolfi PP (2009) Molecular genetics of acute lymphoblastic leukemia. Annu Rev Pathol 4:175–198

    PubMed  CAS  Google Scholar 

  58. McCormack MP et al (2010) The Lmo2 oncogene initiates leukemia in mice by inducing thymocyte self-renewal. Science 327:879–883

    PubMed  CAS  Google Scholar 

  59. Chiu PP et al (2010) Leukemia-initiating cells in human T-lymphoblastic leukemia exhibit glucocorticoid resistance. Blood 116:5268–5279

    PubMed  CAS  Google Scholar 

  60. Guo W et al (2008) Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature 453:529–533

    PubMed  CAS  Google Scholar 

  61. McCormack MP, Curtis DJ (2010) The thymus under siege: Lmo2 induces precancerous stem cells in a mouse model of T-ALL. Cell Cycle 9:2267–2268

    PubMed  CAS  Google Scholar 

  62. Tremblay M et al (2010) Modeling T-cell acute lymphoblastic leukemia induced by the SCL and LMO1 oncogenes. Genes Dev 24:1093–1105

    PubMed  CAS  Google Scholar 

  63. Gleissner B et al (2002) Leading prognostic relevance of the BCR-ABL translocation in adult acute B-lineage lymphoblastic leukemia: a prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. Blood 99:1536–1543

    PubMed  CAS  Google Scholar 

  64. Ribeiro RC et al (1987) Clinical and biologic hallmarks of the Philadelphia chromosome in childhood acute lymphoblastic leukemia. Blood 70:948–953

    PubMed  CAS  Google Scholar 

  65. Chan LC et al (1987) A novel abl protein expressed in Philadelphia chromosome positive acute lymphoblastic leukaemia. Nature 325:635–637

    PubMed  CAS  Google Scholar 

  66. Cobaleda C et al (2000) A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia. Blood 95:1007–1013

    PubMed  CAS  Google Scholar 

  67. Cox CV et al (2004) Characterization of acute lymphoblastic leukemia progenitor cells. Blood 104:2919–2925

    PubMed  CAS  Google Scholar 

  68. le Viseur C et al (2008) In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell 14:47–58

    PubMed  Google Scholar 

  69. Cox CV et al (2009) Expression of CD133 on leukemia-initiating cells in childhood ALL. Blood 113:3287–3296

    PubMed  CAS  Google Scholar 

  70. Hong D et al (2008) Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 319:336–339

    PubMed  CAS  Google Scholar 

  71. Morrow M et al (2004) TEL-AML1 promotes development of specific hematopoietic lineages consistent with preleukemic activity. Blood 103:3890–3896

    PubMed  CAS  Google Scholar 

  72. Bateman CM et al (2010) Acquisition of genome-wide copy number alterations in monozygotic twins with acute lymphoblastic leukemia. Blood 115:3553–3558

    PubMed  CAS  Google Scholar 

  73. Anderson K et al (2011) Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469:356–361

    PubMed  CAS  Google Scholar 

  74. Hotfilder M et al (2005) Leukemic stem cells in childhood high-risk ALL/t(9;22) and t(4;11) are present in primitive lymphoid-restricted CD34+CD19- cells. Cancer Res 65:1442–1449

    PubMed  CAS  Google Scholar 

  75. Menendez P et al (2009) Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene. J Exp Med 206:3131–3141

    PubMed  CAS  Google Scholar 

  76. Varnum-Finney B et al (2000) Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 6:1278–1281

    PubMed  CAS  Google Scholar 

  77. Karanu FN et al (2000) The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med 192:1365–1372

    PubMed  CAS  Google Scholar 

  78. Armstrong F et al (2009) NOTCH is a key regulator of human T-cell acute leukemia initiating cell activity. Blood 113:1730–1740

    PubMed  CAS  Google Scholar 

  79. Maillard I et al (2008) Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 2:356–366

    PubMed  CAS  Google Scholar 

  80. Stier S et al (2002) Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 99:2369–2378

    PubMed  CAS  Google Scholar 

  81. Duncan AW et al (2005) Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 6:314–322

    PubMed  CAS  Google Scholar 

  82. Zhao C et al (2007) Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 12:528–541

    PubMed  CAS  Google Scholar 

  83. Reya T et al (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423:409–414

    PubMed  CAS  Google Scholar 

  84. Zheng X et al (2004) Gamma-catenin contributes to leukemogenesis induced by AML-associated translocation products by increasing the self-renewal of very primitive progenitor cells. Blood 103:3535–3543

    PubMed  CAS  Google Scholar 

  85. Yeung J et al (2010) Beta-catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell 18:606–618

    PubMed  CAS  Google Scholar 

  86. Zhang Y, Kalderon D (2001) Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 410:599–604

    PubMed  CAS  Google Scholar 

  87. Gao J et al (2009) Hedgehog signaling is dispensable for adult hematopoietic stem cell function. Cell Stem Cell 4:548–558

    PubMed  CAS  Google Scholar 

  88. Zhao C et al (2009) Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458:776–779

    PubMed  CAS  Google Scholar 

  89. Lessard J, Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423:255–260

    PubMed  CAS  Google Scholar 

  90. Park IK et al (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423:302–305

    PubMed  CAS  Google Scholar 

  91. Sauvageau G et al (1995) Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 9:1753–1765

    PubMed  CAS  Google Scholar 

  92. Antonchuk J et al (2002) HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109:39–45

    PubMed  CAS  Google Scholar 

  93. Heuser M et al (2009) Modeling the functional heterogeneity of leukemia stem cells: role of STAT5 in leukemia stem cell self-renewal. Blood 114:3983–3993

    PubMed  CAS  Google Scholar 

  94. Ito K et al (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12:446–451

    PubMed  CAS  Google Scholar 

  95. Owusu-Ansah E, Banerjee U (2009) Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461:537–541

    PubMed  CAS  Google Scholar 

  96. Tothova Z et al (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128:325–339

    PubMed  CAS  Google Scholar 

  97. Naka K et al (2010) TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463:676–680

    PubMed  CAS  Google Scholar 

  98. Gross S et al (2010) Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 207:339–344

    PubMed  CAS  Google Scholar 

  99. Ward PS et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234

    PubMed  CAS  Google Scholar 

  100. Figueroa ME et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567

    PubMed  CAS  Google Scholar 

  101. Colmone A et al (2008) Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322:1861–1865

    PubMed  CAS  Google Scholar 

  102. Konopleva MY, Jordan CT (2011) Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol 29:591–599

    PubMed  Google Scholar 

  103. Mazumdar J et al (2010) O2 regulates stem cells through Wnt/beta-catenin signalling. Nat Cell Biol 12:1007–1013

    PubMed  CAS  Google Scholar 

  104. Takubo K et al (2010) Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7:391–402

    PubMed  CAS  Google Scholar 

  105. Nagasawa T et al (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382:635–638

    PubMed  CAS  Google Scholar 

  106. Tavor S et al (2004) CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res 64:2817–2824

    PubMed  CAS  Google Scholar 

  107. Jin L et al (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174

    PubMed  Google Scholar 

  108. Krause DS et al (2006) Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 12:1175–1180

    PubMed  CAS  Google Scholar 

  109. Pardal R et al (2005) Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. Cold Spring Harb Symp Quant Biol 70:177–185

    PubMed  CAS  Google Scholar 

  110. Radtke F et al (2010) Notch signaling in the immune system. Immunity 32:14–27

    PubMed  CAS  Google Scholar 

  111. Shen Q et al (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340

    PubMed  CAS  Google Scholar 

  112. Hitoshi S et al (2002) Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev 16:846–858

    PubMed  CAS  Google Scholar 

  113. Kunisato A et al (2003) HES-1 preserves purified hematopoietic stem cells ex vivo and accumulates side population cells in vivo. Blood 101:1777–1783

    PubMed  CAS  Google Scholar 

  114. Calvi LM et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    PubMed  CAS  Google Scholar 

  115. Mancini SJ et al (2005) Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood 105:2340–2342

    PubMed  CAS  Google Scholar 

  116. Malecki MJ et al (2006) Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol Cell Biol 26:4642–4651

    PubMed  CAS  Google Scholar 

  117. Chiang MY et al (2006) Identification of a conserved negative regulatory sequence that influences the leukemogenic activity of NOTCH1. Mol Cell Biol 26:6261–6271

    PubMed  CAS  Google Scholar 

  118. Tomita K et al (1999) The bHLH gene Hes1 is essential for expansion of early T cell precursors. Genes Dev 13:1203–1210

    PubMed  CAS  Google Scholar 

  119. Yu X et al (2006) HES1 inhibits cycling of hematopoietic progenitor cells via DNA binding. Stem Cells 24:876–888

    PubMed  CAS  Google Scholar 

  120. Wilson A, Radtke F (2006) Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett 580:2860–2868

    PubMed  CAS  Google Scholar 

  121. Wend P et al (2010) Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol 21:855–863

    PubMed  CAS  Google Scholar 

  122. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    PubMed  CAS  Google Scholar 

  123. Zhu L et al (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457:603–607

    PubMed  CAS  Google Scholar 

  124. Vermeulen L et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12:468–476

    PubMed  CAS  Google Scholar 

  125. Malanchi I et al (2008) Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature 452:650–653

    PubMed  CAS  Google Scholar 

  126. Zhang M et al (2010) Selective targeting of radiation-resistant tumor-initiating cells. Proc Natl Acad Sci USA 107:3522–3527

    PubMed  CAS  Google Scholar 

  127. Scheller M et al (2006) Hematopoietic stem cell and multilineage defects generated by constitutive beta-catenin activation. Nat Immunol 7:1037–1047

    PubMed  CAS  Google Scholar 

  128. Murdoch B et al (2003) Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc Natl Acad Sci USA 100:3422–3427

    PubMed  CAS  Google Scholar 

  129. Fleming HE et al (2008) Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2:274–283

    PubMed  CAS  Google Scholar 

  130. Koch U et al (2008) Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis. Blood 111:160–164

    PubMed  CAS  Google Scholar 

  131. Heretsch P et al (2010) Modulators of the hedgehog signaling pathway. Bioorg Med Chem 18:6613–6624

    PubMed  CAS  Google Scholar 

  132. Trowbridge JJ et al (2006) Hedgehog modulates cell cycle regulators in stem cells to control hematopoietic regeneration. Proc Natl Acad Sci USA 103:14134–14139

    PubMed  CAS  Google Scholar 

  133. Bhardwaj G et al (2001) Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2:172–180

    PubMed  CAS  Google Scholar 

  134. Dohle E et al (2010) Sonic hedgehog promotes angiogenesis and osteogenesis in a coculture system consisting of primary osteoblasts and outgrowth endothelial cells. Tissue Eng Part A 16:1235–1237

    PubMed  CAS  Google Scholar 

  135. Teglund S, Toftgard R (2010) Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta 1805:181–208

    PubMed  CAS  Google Scholar 

  136. Varnat F et al (2009) Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med 1:338–351

    PubMed  CAS  Google Scholar 

  137. Yauch RL et al (2008) A paracrine requirement for hedgehog signalling in cancer. Nature 455:406–410

    PubMed  CAS  Google Scholar 

  138. Hsieh A et al (2011) Hedgehog/GLI1 regulates IGF dependent malignant behaviors in glioma stem cells. J Cell Physiol 226:1118–1127

    PubMed  CAS  Google Scholar 

  139. Peacock CD et al (2007) Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 104:4048–4053

    PubMed  CAS  Google Scholar 

  140. Lin TL et al (2010) Self-renewal of acute lymphocytic leukemia cells is limited by the Hedgehog pathway inhibitors cyclopamine and IPI-926. PLoS One 5:e15262

    PubMed  CAS  Google Scholar 

  141. Dierks C et al (2008) Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 14:238–249

    PubMed  CAS  Google Scholar 

  142. Sauvageau M, Sauvageau G (2010) Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 7:299–313

    PubMed  CAS  Google Scholar 

  143. Schwartz YB, Pirrotta V (2007) Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 8:9–22

    PubMed  CAS  Google Scholar 

  144. Levine SS et al (2002) The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol Cell Biol 22:6070–6078

    PubMed  CAS  Google Scholar 

  145. Valk-Lingbeek ME et al (2004) Stem cells and cancer; the polycomb connection. Cell 118:409–418

    PubMed  CAS  Google Scholar 

  146. Cao R et al (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298:1039–1043

    PubMed  CAS  Google Scholar 

  147. Czermin B et al (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111:185–196

    PubMed  CAS  Google Scholar 

  148. Kirmizis A et al (2004) Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev 18:1592–1605

    PubMed  CAS  Google Scholar 

  149. Kuzmichev A et al (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of zeste protein. Genes Dev 16:2893–2905

    PubMed  CAS  Google Scholar 

  150. Guo WJ et al (2007) Mel-18 acts as a tumor suppressor by repressing Bmi-1 expression and down-regulating Akt activity in breast cancer cells. Cancer Res 67:5083–5089

    PubMed  CAS  Google Scholar 

  151. Tetsu O et al (1998) Mel-18 negatively regulates cell cycle progression upon B cell antigen receptor stimulation through a cascade leading to c-myc/cdc25. Immunity 9:439–448

    PubMed  CAS  Google Scholar 

  152. van der Lugt NM et al (1994) Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev 8:757–769

    PubMed  Google Scholar 

  153. Iwama A et al (2004) Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21:843–851

    PubMed  CAS  Google Scholar 

  154. Kajiume T et al (2009) Reciprocal expression of Bmi1 and Mel-18 is associated with functioning of primitive hematopoietic cells. Exp Hematol 37:857–866 e2

    PubMed  CAS  Google Scholar 

  155. Jacobs JJ et al (1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397:164–168

    PubMed  CAS  Google Scholar 

  156. Oguro H et al (2006) Differential impact of Ink4a and Arf on hematopoietic stem cells and their bone marrow microenvironment in Bmi1-deficient mice. J Exp Med 203:2247–2253

    PubMed  CAS  Google Scholar 

  157. Jacobs JJ et al (1999) Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 13:2678–2690

    PubMed  CAS  Google Scholar 

  158. van Lohuizen M et al (1991) Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65:737–752

    PubMed  Google Scholar 

  159. Haupt Y et al (1991) Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell 65:753–763

    PubMed  CAS  Google Scholar 

  160. Martin-Perez D et al (2010) Polycomb proteins in hematologic malignancies. Blood 116:5465–5475

    PubMed  CAS  Google Scholar 

  161. Lee TI et al (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125:301–313

    PubMed  CAS  Google Scholar 

  162. Boyer LA et al (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349–353

    PubMed  CAS  Google Scholar 

  163. Kim JY et al (2004) Defective long-term repopulating ability in hematopoietic stem cells lacking the Polycomb-group gene rae28. Eur J Haematol 73:75–84

    PubMed  CAS  Google Scholar 

  164. Chiba T et al (2008) The polycomb gene product BMI1 contributes to the maintenance of tumor-initiating side population cells in hepatocellular carcinoma. Cancer Res 68:7742–7749

    PubMed  CAS  Google Scholar 

  165. Rizo A et al (2009) Repression of BMI1 in normal and leukemic human CD34(+) cells impairs self-renewal and induces apoptosis. Blood 114:1498–1505

    PubMed  CAS  Google Scholar 

  166. Yuan J et al (2011) Bmi1 is essential for leukemic reprogramming of myeloid progenitor cells. Leukemia 25(8):1335–1343

    PubMed  CAS  Google Scholar 

  167. Rizo A et al (2010) BMI1 collaborates with BCR-ABL in leukemic transformation of human CD34+ cells. Blood 116:4621–4630

    PubMed  CAS  Google Scholar 

  168. Mihara K et al (2006) Bmi-1 is useful as a novel molecular marker for predicting progression of myelodysplastic syndrome and patient prognosis. Blood 107:305–308

    PubMed  CAS  Google Scholar 

  169. Chowdhury M et al (2007) Expression of Polycomb-group (PcG) protein BMI-1 predicts prognosis in patients with acute myeloid leukemia. Leukemia 21:1116–1122

    PubMed  CAS  Google Scholar 

  170. Mohty M et al (2007) The polycomb group BMI1 gene is a molecular marker for predicting prognosis of chronic myeloid leukemia. Blood 110:380–383

    PubMed  CAS  Google Scholar 

  171. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  172. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    PubMed  CAS  Google Scholar 

  173. Cairns RA et al (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    PubMed  CAS  Google Scholar 

  174. Vander Heiden MG et al (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    PubMed  CAS  Google Scholar 

  175. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    PubMed  CAS  Google Scholar 

  176. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    PubMed  CAS  Google Scholar 

  177. Diehn M et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783

    PubMed  CAS  Google Scholar 

  178. Kobayashi CI, Suda T (2011) Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol. doi:10.1002/jcp. 22764

    Google Scholar 

  179. Balaban RS et al (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    PubMed  CAS  Google Scholar 

  180. Katsuyama M (2010) NOX/NADPH oxidase, the superoxide-generating enzyme: its transcriptional regulation and physiological roles. J Pharmacol Sci 114:134–146

    PubMed  CAS  Google Scholar 

  181. Storz P (2011) Forkhead homeobox type O transcription factors in the responses to oxidative stress. Antioxid Redox Signal 14:593–605

    PubMed  CAS  Google Scholar 

  182. Miyamoto K et al (2007) Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1:101–112

    PubMed  CAS  Google Scholar 

  183. Tsai WB et al (2008) Functional interaction between FOXO3a and ATM regulates DNA damage response. Nat Cell Biol 10:460–467

    PubMed  CAS  Google Scholar 

  184. Yalcin S et al (2008) Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells. J Biol Chem 283:25692–25705

    PubMed  CAS  Google Scholar 

  185. Gan B et al (2010) Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468:701–704

    PubMed  CAS  Google Scholar 

  186. Gurumurthy S et al (2010) The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468:659–663

    PubMed  CAS  Google Scholar 

  187. Nakada D et al (2010) Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468:653–658

    PubMed  CAS  Google Scholar 

  188. Ishimoto T et al (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(−) and thereby promotes tumor growth. Cancer Cell 19:387–400

    PubMed  CAS  Google Scholar 

  189. Guzman ML et al (2005) The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 105:4163–4169

    PubMed  CAS  Google Scholar 

  190. Ito K et al (2008) PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453:1072–1078

    PubMed  CAS  Google Scholar 

  191. Kim YR et al (2010) Myeloperoxidase expression as a potential determinant of parthenolide-induced apoptosis in leukemia bulk and leukemia stem cells. J Pharmacol Exp Ther 335:389–400

    PubMed  CAS  Google Scholar 

  192. Chou WC, Dang CV (2005) Acute promyelocytic leukemia: recent advances in therapy and molecular basis of response to arsenic therapies. Curr Opin Hematol 12:1–6

    PubMed  CAS  Google Scholar 

  193. Yalcin S et al (2010) ROS-mediated amplification of AKT/mTOR signalling pathway leads to myeloproliferative syndrome in Foxo3(−/−) mice. EMBO J 29:4118–4131

    PubMed  CAS  Google Scholar 

  194. Meads MB et al (2009) Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 9:665–674

    PubMed  CAS  Google Scholar 

  195. Perry JM, Li L (2007) Disrupting the stem cell niche: good seeds in bad soil. Cell 129:1045–1047

    PubMed  CAS  Google Scholar 

  196. Zhang J et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841

    PubMed  CAS  Google Scholar 

  197. Kopp HG et al (2005) The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda) 20:349–356

    CAS  Google Scholar 

  198. Wei J et al (2008) Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 13:483–495

    PubMed  CAS  Google Scholar 

  199. Nilsson SK et al (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106:1232–1239

    PubMed  CAS  Google Scholar 

  200. Naveiras O, Daley GQ (2006) Stem cells and their niche: a matter of fate. Cell Mol Life Sci 63:760–766

    PubMed  CAS  Google Scholar 

  201. Konoplev S et al (2007) Overexpression of CXCR4 predicts adverse overall and event-free survival in patients with unmutated FLT3 acute myeloid leukemia with normal karyotype. Cancer 109:1152–1156

    PubMed  CAS  Google Scholar 

  202. Rombouts EJ et al (2004) Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood 104:550–557

    PubMed  CAS  Google Scholar 

  203. Zoller M (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 11:254–267

    PubMed  Google Scholar 

  204. Lapidot T et al (2005) How do stem cells find their way home? Blood 106:1901–1910

    PubMed  CAS  Google Scholar 

  205. Lundell BI et al (1997) Activation of beta1 integrins on CML progenitors reveals cooperation between beta1 integrins and CD44 in the regulation of adhesion and proliferation. Leukemia 11:822–829

    PubMed  CAS  Google Scholar 

  206. Stern R (2008) Association between cancer and “acid mucopolysaccharides”: an old concept comes of age, finally. Semin Cancer Biol 18:238–243

    PubMed  CAS  Google Scholar 

  207. Girish KS, Kemparaju K (2007) The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 80:1921–1943

    PubMed  CAS  Google Scholar 

  208. Avigdor A et al (2004) CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood 103:2981–2989

    PubMed  CAS  Google Scholar 

  209. Jin L et al (2009) Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 5:31–42

    PubMed  CAS  Google Scholar 

  210. Majeti R et al (2009) CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138:286–299

    PubMed  CAS  Google Scholar 

  211. Jaiswal S et al (2009) CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138:271–285

    PubMed  CAS  Google Scholar 

  212. Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129:465–472

    PubMed  CAS  Google Scholar 

  213. Pouyssegur J et al (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441:437–443

    PubMed  CAS  Google Scholar 

  214. Majmundar AJ et al (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40:294–309

    PubMed  CAS  Google Scholar 

  215. Simsek T et al (2010) The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7:380–390

    PubMed  CAS  Google Scholar 

  216. Yoshida Y et al (2009) Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5:237–241

    PubMed  CAS  Google Scholar 

  217. McCord AM et al (2009) Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro. Mol Cancer Res 7:489–497

    PubMed  CAS  Google Scholar 

  218. Gustafsson MV et al (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9:617–628

    PubMed  CAS  Google Scholar 

  219. Chen Y et al (2007) Oxygen concentration determines the biological effects of NOTCH-1 signaling in adenocarcinoma of the lung. Cancer Res 67:7954–7959

    PubMed  CAS  Google Scholar 

  220. Li Z et al (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15:501–513

    PubMed  CAS  Google Scholar 

  221. Janzen V et al (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443:421–426

    PubMed  CAS  Google Scholar 

  222. Clarke MF et al (2006) Cancer stem cells–perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344

    PubMed  CAS  Google Scholar 

  223. Trumpp A, Wiestler OD (2008) Mechanisms of disease: cancer stem cells–targeting the evil twin. Nat Clin Pract Oncol 5:337–347

    PubMed  CAS  Google Scholar 

  224. Guzman ML et al (2001) Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98:2301–2307

    PubMed  CAS  Google Scholar 

  225. Guzman ML et al (2007) An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 110:4427–4435

    PubMed  CAS  Google Scholar 

  226. Guzman ML et al (2007) Rapid and selective death of leukemia stem and progenitor cells induced by the compound 4-benzyl, 2-methyl, 1,2,4-thiadiazolidine, 3,5 dione (TDZD-8). Blood 110:4436–4444

    PubMed  CAS  Google Scholar 

  227. Burger M et al (2005) Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood 106:1824–1830

    PubMed  CAS  Google Scholar 

  228. Juarez J et al (2003) Effects of inhibitors of the chemokine receptor CXCR4 on acute lymphoblastic leukemia cells in vitro. Leukemia 17:1294–1300

    PubMed  CAS  Google Scholar 

  229. Nervi B et al (2009) Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 113:6206–6214

    PubMed  CAS  Google Scholar 

  230. Zeng Z et al (2009) Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 113:6215–6224

    PubMed  CAS  Google Scholar 

  231. Na Nakorn T et al (2002) Myeloerythroid-restricted progenitors are sufficient to confer radioprotection and provide the majority of day 8 CFU-S. J Clin Invest 109:1579–1585

    PubMed  Google Scholar 

  232. National Cancer Institute (2008) Surveillance, Epidemiology, and End Results (SEER) Program. http://www.seer.cancer.gov/statfacts/html/alyl.html. Accessed 20 June 2008

Download references

Acknowledgements

We would like to thank Dr. Andrew P. Weng for supporting us, Melissa Howard for numerous discussions and help in the editing of manuscript, Sonya Lam and Olena Shevchuk for their collaboration and assistance in the lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Giambra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Giambra, V., Jenkins, C.R. (2012). Stem Cells and Leukemia. In: Srivastava, R., Shankar, S. (eds) Stem Cells and Human Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2801-1_13

Download citation

Publish with us

Policies and ethics