Skip to main content

Plant Mitochondrial Mutations

  • Chapter
  • First Online:
Genomics of Chloroplasts and Mitochondria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 35))

Summary

The complex mitochondrial genomes of angiosperms tend to rearrange, leading to rapid structural evolution and to visible mutations. The observed mutations include those affecting growth and morphology, as well as male fertility. The abnormal growth mutations are usually associated with defects in essential mitochondrial genes. In contrast, cytoplasmic male sterility (CMS) usually results from the de novo expression of chimeric open reading frames (ORFs) in rearranged mitochondrial genomes. The expression of the CMS-chimeric ORFs can be modified by nuclear restorer-of-fertility (Rf) genes. Most of the Rf genes described to date are rapidly evolving members of a class of genes encoding pentatricopeptide repeat (PPR) proteins. Plants may also revert to fertility following mitochondrial DNA (mtDNA) rearrangements that disrupt the sterility-associated region. Alternatively, subgenomes containing a CMS-ORF may be lost or highly suppressed. In many cases, the mtDNA rearrangements that lead to phenotypic changes are mediated by events involving short or microhomologous repeats. In this chapter, we emphasize work on cytoplasmic male sterility, including cytoplasmic reversion to fertility and nuclear restoration of fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

atp :

Gene encoding a subunit of ATPase;

bp:

Base pairs;

CMS:

Cytoplasmic male sterility;

CMS-ORFs:

ORFs usually chimeric, associated with CMS;

cox :

Gene encoding a subunit of cytochrome oxidase;

HR:

Homologous recombination;

kb:

Kilobase;

MDL:

Maternal distorted leaf;

Mmt:

Modifier of mitochondrial transcripts;

MSC:

Paternally transmitted mosaic;

mtDNA:

Mitochondrial DNA;

MSH1:

MutS homolog;

nad :

Gene encoding a subunit of the Complex I NADH dehydrogenase;

NCS:

Nonchromo­somal stripe;

ORF:

Open reading frame;

OSB1:

Organellar single-stranded DNA binding protein;

PPR:

Pentatricopeptide repeat;

Rf :

Restorer of fertility;

RNAi:

RNA interference;

SSS:

Substoichiometric shifting;

TCM:

Teosinte-cytoplasm miniature;

TIRs:

Terminal inverted repeats

References

  • Abad AR, Mehrtens BJ, Mackenzie SA (1995) Specific expression in reproductive tissues and fate of a mitochondrial sterility-associated protein in cytoplasmic male-sterile bean. Plant Cell 7:271–285

    PubMed  CAS  Google Scholar 

  • Abdelnoor RV, Yule R, Elo A, Christensen AC, Meyer-Gauen G, Mackenzie SA (2003) Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc Natl Acad Sci USA 100:5968–5973

    Article  PubMed  CAS  Google Scholar 

  • Akagi H, Nakamura A, Yokozeki-Misono Y, Inagaki A, Takahashi H, Mori K, Fujimura T (2004) Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein. Theor Appl Genet 108:1449–1457

    Article  PubMed  CAS  Google Scholar 

  • Al-Faifi S, Meyer JD, Garcia-Mas J, Monforte AJ, Havey MJ (2008) Exploiting synteny in Cucumis for mapping of Psm: a unique locus controlling paternal mitochondrial sorting. Theor Appl Genet 117:523–529

    Article  PubMed  CAS  Google Scholar 

  • Allen JO (2005) Effect of teosinte cytoplasmic genomes on maize phenotype. Genetics 169:863–880

    Article  PubMed  CAS  Google Scholar 

  • Allen JO, Emenhiser GK, Kermicle JL (1989) Miniature kernel and plant: interaction between teosinte cytoplasmic genomes and maize nuclear genomes. Maydica 34:277–290

    Google Scholar 

  • Allen JO, Fauron CM, Minx P, Roark L, Oddiraju S, Lin GN, Meyer L, Sun H, Kim K, Wang C et al (2007) Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics 177:1173–1192

    Article  PubMed  CAS  Google Scholar 

  • Andres C, Lurin C, Small I (2007) The multifarious roles of PPR proteins in plant mitochondrial gene expression. Physiol Plant 129:14–22

    Article  CAS  Google Scholar 

  • Arrieta-Montiel M, Lyznik A, Woloszynska M, Janska H, Tohme J, Mackenzie S (2001) Tracing evolutionary and developmental implications of mitochondrial stoichiometric shifting in the common bean. Genetics 158:851–864

    PubMed  CAS  Google Scholar 

  • Arrieta-Montiel MP, Shedge V, Davila J, Christensen AC, Mackenzie SA (2009) Diversity of the arabidopsis mitochondrial genome occurs via nuclear-controlled recombination activity. Genetics 183:1261–1268

    Article  PubMed  CAS  Google Scholar 

  • Bailey-Serres J, Hanson DK, Fox TD, Leaver CJ (1986) Mitochondrial genome rearrangement leads to extension and relocation of the cytochrome c oxidase subunit I gene in sorghum. Cell 47:567–576

    Article  PubMed  CAS  Google Scholar 

  • Baker F, Newton KJ (1995) Analysis of defective leaf sectors and aborted kernels in NCS2 mutant plants. Maydica 40:89–98

    Google Scholar 

  • Balk J, Leaver CJ (2001) The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13:1803–1818

    PubMed  CAS  Google Scholar 

  • Barr CM, Fishman L (2010) The nuclear component of a cytonuclear hybrid incompatibility in Mimulus maps to a cluster of pentatricopeptide repeat genes. Genetics 184:455–465

    Article  PubMed  CAS  Google Scholar 

  • Barr CM, Fishman L (2011) Cytoplasmic male sterility in Mimulus hybrids has pleiotropic effects on corolla and pistil traits. Heredity 106:886–893

    Article  PubMed  CAS  Google Scholar 

  • Bartoszewski G, Malepszy S, Havey MJ (2004) Mosaic (MSC) cucumbers regenerated from independent cell cultures possess different mitochondrial rearrangements. Curr Genet 45:45–53

    Article  PubMed  CAS  Google Scholar 

  • Bellaoui M, Martin-Canadell A, Pelletier G, Budar F (1998) Low-copy-number molecules are produced by recombination, actively maintained and can be amplified in the mitochondrial genome of Brassi­caceae: relationship to reversion of the male sterile phenotype in some cybrids. Mol Gen Genet 257:177–185

    Article  PubMed  CAS  Google Scholar 

  • Bentolila S, Alfonso AA, Hanson MR (2002) A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc Natl Acad Sci USA 99:10887–10892

    Article  PubMed  CAS  Google Scholar 

  • Bergman P, Edqvist J, Farbos I, Glimelius K (2000) Male-sterile tobacco displays abnormal mitochondrial atp1 transcript accumulation and reduced floral ATP/ADP ratio. Plant Mol Biol 42:531–544

    Article  PubMed  CAS  Google Scholar 

  • Boeshore ML, Hanson MR, Izhar S (1985) A variant mitochondrial DNA arrangement specific to Petunia sterile somatic hybrids. Plant Mol Biol 4:125–132

    Article  CAS  Google Scholar 

  • Bonhomme S, Budar F, Ferault M, Pelletier G (1991) A 2.5 kb NcoI fragment of Ogura radish mitochondrial DNA is correlated with cytoplasmic male sterility in Brassica cybrids. Curr Genet 19:121–127

    Article  CAS  Google Scholar 

  • Bonhomme S, Budar F, Lancelin D, Small I, Defrance M, Pelletier G (1992) Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrids. Mol Gen Genet 235:340–348

    Article  PubMed  CAS  Google Scholar 

  • Bonnett HT, Kofer W, Hakansson G, Glimelius K (1991) Mitochondrial involvement in petal and stamen development studied by sexual and somatic hybridization of Nicotiana species. Plant Sci 80:119–130

    Article  CAS  Google Scholar 

  • Brown GG, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS (2003) The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35:262–272

    Article  PubMed  CAS  Google Scholar 

  • Burton G (1977) Fertility sterility maintainer mutants in cytoplasmic male sterile pearl millet. Crop Sci 17:635–637

    Article  Google Scholar 

  • Carlsson J, Lagercrantz U, Sundström J, Teixeira R, Wellmer F, Meyerowitz EM, Glimelius K (2007) Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers. Plant J 49:452–462

    Article  PubMed  CAS  Google Scholar 

  • Carlsson J, Leino M, Sohlberg J, Sundström JF, Glimelius K (2008) Mitochondrial regulation of flower development. Mitochondrion 8:74–86

    Article  PubMed  CAS  Google Scholar 

  • Chahal A, Sidhu HS, Wolyn DJ (1998) A fertile revertant from petaloid cytoplasmic male-sterile carrot has a rearranged mitochondrial genome. Theor Appl Genet 97:450–455

    Article  CAS  Google Scholar 

  • Chase CD (1994) Expression of CMS-unique and flanking mitochondrial DNA sequences in Phaseolus vulgaris L. Curr Genet 25:245–251

    Article  PubMed  CAS  Google Scholar 

  • Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. Trends Genet 23:81–90

    Article  PubMed  CAS  Google Scholar 

  • Chase CD, Gabay-Laughnan S (2004) Cytoplasmic male sterility and fertility restoration by nuclear genes. In: Daniell H, Chase CD (eds) Molecular biology and biotechnology of plant organelles. Springer, Dordrecht, pp 593–621

    Chapter  Google Scholar 

  • Chase CD, Ortega VM (1992) Organization of ATPA coding and 3′ flanking sequences associated with cytoplasmic male sterility in Phaseolus vulgaris L. Curr Genet 22:147–153

    Article  PubMed  CAS  Google Scholar 

  • Clifton SW, Minx P, Fauron CM, Gibson M, Allen JO, Sun H, Thompson M, Barbazuk WB, Kanuganti S, Tayloe C et al (2004) Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol 136:3486–3503

    Article  PubMed  CAS  Google Scholar 

  • Cooper P, Butler E, Newton KJ (1990) Identification of a maize nuclear gene which influences the size and number of cox2 transcripts in mitochondria of perennial teosintes. Genetics 126:461–467

    PubMed  CAS  Google Scholar 

  • Cui X, Wise RP, Schnable PS (1996) The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272:1334–1336

    Article  PubMed  CAS  Google Scholar 

  • Delorme V, Keen CL, Raik N, Leaver CJ (1997) Cytoplasmic-nuclear male sterility in pearl millet: comparative RFLP and transcript analyses of ­isonuclear male-sterile lines. Theor Appl Genet 95:961–968

    Article  CAS  Google Scholar 

  • Delph LF, Touzet P, Bailey MF (2007) Merging theory and mechanism in studies of gynodioecy. Trends Ecol Evol 22:17–24

    Article  PubMed  Google Scholar 

  • Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F et al (2003) Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep 4:588–594

    Article  PubMed  CAS  Google Scholar 

  • Dewey RE, Levings CS III, Timothy DH (1986) Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell 44:439–449

    Article  PubMed  CAS  Google Scholar 

  • Dewey RE, Timothy DH, Levings CS III (1987) A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc Natl Acad Sci USA 84:5374–5378

    Article  PubMed  CAS  Google Scholar 

  • Dewey RE, Timothy DH, Levings CS III (1991) Chimeric mitochondrial genes expressed in the C male-sterile cytoplasm of maize. Curr Genet 20:475–482

    Article  PubMed  CAS  Google Scholar 

  • Dieterich JH, Braun HP, Schmitz UK (2003) Alloplasmic male sterility in Brassica napus (CMS ‘Tournefortii-Stiewe’) is associated with a special gene arrangement around a novel atp9 gene. Mol Genet Genomics 269:723–731

    Article  PubMed  CAS  Google Scholar 

  • Doebley J, Sisco PH (1989) On the origin of the maize sterile cytoplasms. Maize Genet Coop News Lett 63:108–109, cited by permission

    Google Scholar 

  • Ducos E, Touzet P, Boutry M (2001) The male sterile G cytoplasm of wild beet displays modified mitochondrial respiratory complexes. Plant J 26:171–180

    Article  PubMed  CAS  Google Scholar 

  • Duvick DN (1965) Cytoplasmic male sterility in corn. Adv Genet 13:1–56

    Article  Google Scholar 

  • Earle ED, Gracen VE, Best VM, Batts LA, Smith ME (1987) Fertile revertants from S-type male-sterile maize grown in vitro. Theor Appl Genet 74:601–609

    Article  Google Scholar 

  • Engelke T, Tatlioglu T (2002) A PCR-marker for the CMS1 inducing cytoplasm in chives derived from recombination events affecting the mitochondrial gene atp9. Theor Appl Genet 104:698–702

    Article  PubMed  CAS  Google Scholar 

  • Escote LJ, Gabay-Laughnan SJ, Laughnan JR (1985) Cytoplasmic reversion to fertility in cms-S maize need not involve loss of linear mitochondrial plasmids. Plasmid 14:264–267

    Article  PubMed  CAS  Google Scholar 

  • Escote-Carlson LJ, Gabay-Laughnan S, Laughnan JR (1988) Reorganization of mitochondrial genomes of cytoplasmic revertants in cms-S inbred line WF9 in maize. Theor Appl Genet 75:659–667

    Article  CAS  Google Scholar 

  • Farbos I, Mouras A, Bereterbide A, Glimelius K (2001) Defective cell proliferation in the floral meristem of alloplasmic plants of Nicotiana tabacum leads to abnormal floral organ development and male ­sterility. Plant J 26:131–142

    Article  PubMed  CAS  Google Scholar 

  • Fauron CM, Havlik M, Brettell RI (1990) The mitochondrial genome organization of a maize fertile cmsT revertant line is generated through recombination between two sets of repeats. Genetics 124:423–428

    PubMed  CAS  Google Scholar 

  • Fauron C, Casper M, Gao Y, Moore B (1995) The maize mitochondrial genome: dynamic, yet functional. Trends Genet 11:228–235

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Jan CC (2008) Introgression and molecular tagging of Rf 4 , a new male fertility restoration gene from wild sunflower Helianthus maximiliani L. Theor Appl Genet 117:241–249

    Article  PubMed  CAS  Google Scholar 

  • Feng X, Kaur AP, Mackenzie SA, Dweikat IM (2009) Substoichiometric shifting in the fertility reversion of cytoplasmic male sterile pearl millet. Theor Appl Genet 118:1361–1370

    Article  PubMed  CAS  Google Scholar 

  • Fishman L, Willis JH (2006) A cytonuclear incompatibility causes anther sterility in Mimulus hybrids. Evolution 60:1372–1381

    PubMed  Google Scholar 

  • Forde BG, Oliver RJ, Leaver CJ (1978) Variation in mitochondrial translation products associated with male-sterile cytoplasms in maize. Proc Natl Acad Sci USA 75:3841–3845

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Toriyama K (2008) Genome barriers between nuclei and mitochondria exemplified by cytoplasmic male sterility. Plant Cell Physiol 49:1484–1494

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Toriyama K (2009) Suppressed expression of retrograde-regulated male sterility restores pollen fertility in cytoplasmic male sterile rice plants. Proc Natl Acad Sci USA 106:9513–9518

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Yamada M, Fujita M, Itabashi E, Hamada K, Yano K, Kurata N, Toriyama K (2010) Cytoplasmic-nuclear genomic barriers in rice pollen development revealed by comparison of global gene expression profiles among five independent cytoplasmic male sterile lines. Plant Cell Physiol 51:610–620

    Article  PubMed  CAS  Google Scholar 

  • Gabay-Laughnan S (2001) High frequency of restorers-of-fertility for CMS-EP in Zea mays L. Maydica 46:122–125

    Google Scholar 

  • Gabay-Laughnan S, Laughnan J (1983) Characteristics of low-frequency male-fertile revertants in S male-sterile inbred lines of maize. Maydica 28:251–264

    Google Scholar 

  • Gabay-Laughnan S, Newton KJ (2005) Mitochondrial mutations in maize. Maydica 50:349–359

    Google Scholar 

  • Gabay-Laughnan S, Zabala G, Laughnan JR (1995) S-type cytoplasmic male sterility in maize. In: Levings CS III, Vasil IK (eds) The molecular biology of plant mitochondria. Kluwer Academic, Dordrecht, pp 395–432

    Chapter  Google Scholar 

  • Gabay-Laughnan S, Kuzmin EV, Monroe J, Roark L, Newton KJ (2009) Characterization of a novel thermosensitive restorer of fertility for cytoplasmic male sterility in maize. Genetics 182:91–103

    Article  PubMed  CAS  Google Scholar 

  • Gillman JD, Bentolila S, Hanson MR (2007) The petunia restorer of fertility protein is part of a large mitochondrial complex that interacts with transcripts of the CMS-associated locus. Plant J 49:217–227

    Article  PubMed  CAS  Google Scholar 

  • Gracen VE (1972) Cytoplasmic inheritance in relation to pest resistance and mitochondrial complementation. Ann Corn Sorghum Res Conf Proc 27:80–92

    Google Scholar 

  • Gracen V, Grogan C (1974) Diversity and suitability for hybrid production of different sources of cytoplasmic male sterility in maize. Agron J 66:654–657

    Article  Google Scholar 

  • Grelon M, Budar F, Bonhomme S, Pelletier G (1994) Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Mol Gen Genet 243:540–547

    Article  PubMed  CAS  Google Scholar 

  • Gu J, Miles D, Newton KJ (1993) Analysis of leaf sectors in the NCS6 mitochondrial mutant of maize. Plant Cell 5:963–971

    PubMed  CAS  Google Scholar 

  • Gu J, Dempsey S, Newton KJ (1994) Rescue of a maize mitochondrial cytochrome oxidase mutant by tissue culture. Plant J 6:787–794

    Article  PubMed  CAS  Google Scholar 

  • Handa H (2008) Linear plasmids in plant mitochondria: peaceful coexistences or malicious invasions? Mitochondrion 8:15–25

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR (1991) Plant mitochondrial mutations and male sterility. Annu Rev Genet 25:461–486

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:S154–S169

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR, Folkerts O (1992) Structure and function of the higher plant mitochondrial genome. Int Rev Cytol 141:129–172

    Article  CAS  Google Scholar 

  • Hanson MR, Wilson RK, Bentolila S, Kohler RH, Chen HC (1999) Mitochondrial gene organization and expression in petunia male fertile and sterile plants. J Hered 90:362–368

    Article  PubMed  CAS  Google Scholar 

  • Havey MJ (2004) The use of cytoplasmic male sterility for hybrid seed production. In: Daniell H, Chase CD (eds) Molecular biology and biotechnology of plant organelles. Springer, Dordrecht, p 623–634

    Chapter  Google Scholar 

  • Havey MJ, Bark OH (1994) Molecular confirmation that sterile cytoplasm has been introduced into open-pollinated grano onion cultivars. J Am Soc Hortic Sci 119:90–93

    CAS  Google Scholar 

  • Havey MJ, Park YH, Bartoszewski G (2004) The PSM locus controls paternal sorting of the cucumber mitochondrial genome. J Hered 95:492–497

    Article  PubMed  CAS  Google Scholar 

  • Hazle T, Bonen L (2007) Comparative analysis of sequences preceding protein-coding mitochondrial genes in flowering plants. Mol Biol Evol 24:1101–1112

    Article  PubMed  CAS  Google Scholar 

  • He S, Lyznik A, Mackenzie S (1995) Pollen fertility restoration by nuclear gene Fr in CMS bean: nuclear-directed alteration of a mitochondrial population. Genetics 139:955–962

    PubMed  CAS  Google Scholar 

  • Heazlewood JL, Whelan J, Millar AH (2003) The products of the mitochondrial orf25 and orfB genes are F0 components in the plant FiF0 ATP synthase. FEBS Lett 540:201–205

    Article  PubMed  CAS  Google Scholar 

  • Horn R (2002) Molecular diversity of male sterility inducing and male-fertile cytoplasms in the genus Helianthus. Theor Appl Genet 104:562–570

    Article  PubMed  CAS  Google Scholar 

  • Horn R, Friedt W (1999) CMS sources in sunflower: different origin but same mechanism? Theor Appl Genet 98:195–201

    Article  Google Scholar 

  • Horn R, Hustedt JE, Horstmeyer A, Hahnen J, Zetsche K, Friedt W (1996) The CMS-associated 16 kDa protein encoded by orfH522 in the PET1 cytoplasm is also present in other male-sterile cytoplasms of sunflower. Plant Mol Biol 30:523–538

    Article  PubMed  CAS  Google Scholar 

  • Hunt MD, Newton KJ (1991) The NCS3 mutation: genetic evidence for the expression of ribosomal protein genes in Zea mays mitochondria. EMBO J 10:1045–1052

    PubMed  CAS  Google Scholar 

  • Ishige T, Storey KK, Gengenbach BG (1985) Cytoplasmic fertile revertants possessing S1 and S2 DNAs in S male-sterile maize. Japan J Breed 35:285–291

    Google Scholar 

  • Itabashi E, Iwata N, Fujii S, Kazama T, Toriyama K (2011) The fertility restorer gene, Rf2, for lead rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein. Plant J 65:359–367

    Article  PubMed  CAS  Google Scholar 

  • Iwabuchi M, Koizuka N, Fujimoto H, Sakai T, Imamura J (1999) Identification and expression of the kosena radish (Raphanus sativus cv. Kosena) homologue of the ogura radish CMS-associated gene, orf138. Plant Mol Biol 39:183–188

    Article  PubMed  CAS  Google Scholar 

  • Janska H, Mackenzie SA (1993) Unusual mitochondrial genome organization in cytoplasmic male sterile common bean and the nature of cytoplasmic reversion to fertility. Genetics 135:869–879

    PubMed  CAS  Google Scholar 

  • Janska H, Sarria R, Woloszynska M, Arrieta-Montiel M, Mackenzie SA (1998) Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility. Plant Cell 10:1163–1180

    PubMed  CAS  Google Scholar 

  • Johns C, Lu M, Lyznik A, Mackenzie S (1992) A mitochondrial DNA sequence is associated with abnormal pollen development in cytoplasmic male sterile bean plants. Plant Cell 4:435–449

    PubMed  CAS  Google Scholar 

  • Jones DF (1956) Genic and cytoplasmic control of ­pollen abortion in maize. Brookhaven Symp Biol 9:101–112

    Google Scholar 

  • Jordan DR, Mace ES, Henzell RG, Klein PE, Klein RR (2010) Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 120:1279–1287

    Article  PubMed  CAS  Google Scholar 

  • Kamps T, Chase C (1997) RFLP mapping of the maize gametophytic restorer-of-fertility locus (rf3) and aberrant pollen transmission of the nonrestoring rf3 allele. Theor Appl Genet 95:525–531

    Article  CAS  Google Scholar 

  • Kato H, Tezuka K, Feng YY, Kawamoto T, Takahashi H, Mori K, Akagi H (2007) Structural diversity and evolution of the Rf-1 locus in the genus Oryza. Heredity 99:516–524

    Article  PubMed  CAS  Google Scholar 

  • Kaul M (1988) Male sterility in higher plants. In: Frankel R, Grosma M, Maliga P (eds) Monographs in theoretical and applied genetics. Springer, New York, pp 356–382

    Google Scholar 

  • Kazama T, Toriyama K (2003) A pentatricopeptide repeat-containing gene that promotes the processing of aberrant atp6 RNA of cytoplasmic male-sterile rice. FEBS Lett 544:99–102

    Article  PubMed  CAS  Google Scholar 

  • Kemble RJ, Mans RJ (1983) Examination of the mitochondrial genome of revertant progeny from S cms maize with cloned S-1 and S-2 hybridization probes. J Mol Appl Genet 2:161–171

    PubMed  CAS  Google Scholar 

  • Kim DH, Kang JG, Kim BD (2007) Isolation and ­characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper (Capsicum annuum L.). Plant Mol Biol 63:519–532

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa J, Posluszny U, Gerrath JM, Wolyn DJ (1994) Developmental and morphological analyses of homeotic cytoplasmic male sterile and fertile carrot flowers. Sex Plant Reprod 7:41–50

    Article  Google Scholar 

  • Kitazaki K, Kubo T (2010) Cost of having the largest mitochondrial genome: evolutionary mechanism of plant mitochondrial genome. J Bot 2010:1–12

    Google Scholar 

  • Klein RR, Klein PE, Mullet JE, Minx P, Rooney WL, Schertz KF (2005) Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12. Theor Appl Genet 111:994–1012

    Article  PubMed  CAS  Google Scholar 

  • Kofer W, Glimelius K, Bonnett HT (1991) Modifications of mitochondrial DNA cause changes in floral development in homeotic-like mutants of tobacco. Plant Cell 3:759–769

    PubMed  CAS  Google Scholar 

  • Köhler RH, Horn R, Lossl A, Zetsche K (1991) Cytoplasmic male sterility in sunflower is correlated with the co-transcription of a new open reading frame with the atpA gene. Mol Gen Genet 227:369–376

    Article  PubMed  Google Scholar 

  • Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kimura Y, Kohno-Murase J, Sakai T, Kawasaki S, Imamura J (2003) Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J 34:407–415

    Article  PubMed  CAS  Google Scholar 

  • Komori T, Ohta S, Murai N, Takakura Y, Kuraya Y, Suzuki S, Hiei Y, Imaseki H, Nitta N (2004) Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J 37:315–325

    Article  PubMed  CAS  Google Scholar 

  • Krishnasamy S, Makaroff CA (1993) Characterization of the radish mitochondrial orfB locus: possible relationship with male sterility in Ogura radish. Curr Genet 24:156–163

    Article  PubMed  CAS  Google Scholar 

  • Krishnasamy S, Grant RA, Makaroff CA (1994) Organ-specific reduction in the abundance of a mitochondrial protein accompanies fertility restoration in cytoplasmic male-sterile radish. Plant Mol Biol 26:935–946

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Newton KJ (2008) Angiosperm mitochondrial genomes and mutations. Mitochondrion 8:5–14

    Article  PubMed  CAS  Google Scholar 

  • Kuzmin EV, Duvick DN, Newton KJ (2005) A mitochondrial mutator system in maize. Plant Physiol 137:779–789

    Article  PubMed  CAS  Google Scholar 

  • Laser KD, Lersten NR (1972) Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. Bot Rev 38:425–454

    Article  Google Scholar 

  • Lauer M, Knudsen C, Newton KJ, Gabay-Laughnan S, Laughnan JR (1990) A partially deleted mitochondrial cytochrome oxidase gene in the NCS6 abnormal growth mutant of maize. New Biol 2:179–186

    PubMed  CAS  Google Scholar 

  • Laughnan JR, Gabay SJ (1973) Mutations leading to nuclear restoration of fertility in S male-sterile cytoplasm in maize. Theor Appl Genet 43:109–116

    Article  Google Scholar 

  • Laughnan JR, Gabay-Laughnan S (1983) Cytoplasmic male sterility in maize. Annu Rev Genet 17:27–48

    Article  PubMed  CAS  Google Scholar 

  • Laughnan JR, Gabay-Laughnan S, Carlson JE (1981) Characteristics of cms-S reversion to male fertility in maize. Stadler Symp 13:93–114

    CAS  Google Scholar 

  • Laver HK, Reynolds SJ, Moneger F, Leaver CJ (1991) Mitochondrial genome organization and expression associated with cytoplasmic male sterility in sunflower (Helianthus annuus). Plant J 1:185–193

    Article  PubMed  CAS  Google Scholar 

  • Leino M, Teixeira R, Landgren M, Glimelius K (2003) Brassica napus lines with rearranged Arabidopsis mitochondria display CMS and a range of developmental aberrations. Theor Appl Genet 106:1156–1163

    PubMed  CAS  Google Scholar 

  • Lemke CA, Gracen VE, Everett HL (1985) A new source of cytoplasmic male sterility in maize induced by the nuclear gene, iojap. Theor Appl Genet 71:481–485

    Article  Google Scholar 

  • Lemke CA, Gracen VE, Everett HL (1988) A second source of cytoplasmic male sterility in maize induced by the nuclear gene iojap. J Hered 79:459–464

    Google Scholar 

  • Levings CS III (1993) Thoughts on cytoplasmic male sterility in cms-T Maize. Plant Cell 5:1285–1290

    PubMed  Google Scholar 

  • Levings CS III, Kim BD, Pring DR, Conde MF, Mans RJ, Laughnan JR, Gabay-Laughnan SJ (1980) Cytoplasmic reversion of cms-S in maize: association with a transpositional event. Science 209:1021–1023

    Article  PubMed  CAS  Google Scholar 

  • L’Homme Y, Brown GG (1993) Organizational differences between cytoplasmic male sterile and male fertile Brassica mitochondrial genomes are confined to a single transposed locus. Nucleic Acids Res 21:1903–1909

    Article  PubMed  Google Scholar 

  • L’Homme Y, Stahl RJ, Li XQ, Hameed A, Brown GG (1997) Brassica nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf224 gene. Curr Genet 31:325–335

    Article  PubMed  Google Scholar 

  • Li XQ, Jean M, Landry BS, Brown GG (1998) Restorer genes for different forms of Brassica cytoplasmic male sterility map to a single nuclear locus that modifies transcripts of several mitochondrial genes. Proc Natl Acad Sci USA 95:10032–10037

    Article  PubMed  CAS  Google Scholar 

  • Lilly JW, Bartoszewski G, Malepszy S, Havey MJ (2001) A major deletion in the cucumber mitochondrial genome sorts with the MSC phenotype. Curr Genet 40:144–151

    Article  PubMed  CAS  Google Scholar 

  • Linke B, Börner T (2005) Mitochondrial effects on flower and pollen development. Mitochondrion 5:389–402

    Article  PubMed  CAS  Google Scholar 

  • Linke B, Nothnagel T, Börner T (2003) Flower development in carrot CMS plants: mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS. Plant J 34:27–37

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Cui X, Horner HT, Weiner H, Schnable PS (2001) Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize. Plant Cell 13:1063–1078

    PubMed  CAS  Google Scholar 

  • Liu Z, Peter SO, Long M, Weingartner U, Stamp P, Kaeser O (2002) A PCR assay for rapid discrimination of sterile cytoplasm types in maize. Crop Sci 42:566–569

    Article  CAS  Google Scholar 

  • Lonsdale DM (1987) Cytoplasmic male sterility: a molecular perspective. Plant Physiol Biochem 25:265–271

    CAS  Google Scholar 

  • Lonsdale DM, Hodge TP, Fauron MR (1984) The physical map and organisation of the mitochondrial genome from the fertile cytoplasm of maize. Nucleic Acids Res 12:9249–9261

    Article  PubMed  CAS  Google Scholar 

  • Lupold DS, Caoile AG, Stern DB (1999) Genomic context influences the activity of maize mitochondrial cox2 promoters. Proc Natl Acad Sci 96:11670–11675

    Article  PubMed  CAS  Google Scholar 

  • Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B et al (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie SA (1991) Identification of a sterility-inducing cytoplasm in a fertile accession line of Phaseolus vulgaris L. Genetics 127:411–416

    PubMed  CAS  Google Scholar 

  • Mackenzie SA, Chase CD (1990) Fertility restoration is associated with loss of a portion of the mitochondrial genome in cytoplasmic male-sterile common bean. Plant Cell 2:905–912

    PubMed  CAS  Google Scholar 

  • Mackenzie SA, Pring DR, Bassett MJ, Chase CD (1988) Mitochondrial DNA rearrangement associated with fertility restoration and cytoplasmic reversion to fertility in cytoplasmic male sterile Phaseolus vulgaris L. Proc Natl Acad Sci USA 85:2714–2717

    Article  PubMed  CAS  Google Scholar 

  • Makaroff CA, Palmer JD (1988) Mitochondrial DNA rearrangements and transcriptional alterations in the male-sterile cytoplasm of Ogura radish. Mol Cell Biol 8:1474–1480

    PubMed  CAS  Google Scholar 

  • Maréchal A, Brisson N (2010) Recombination and the maintenance of plant organelle genome stability. New Phytol 186:299–317

    Article  PubMed  CAS  Google Scholar 

  • Marienfeld JR, Newton KJ (1994) The maize NCS2 abnormal growth mutant has a chimeric nad4-nad7 mitochondrial gene and is associated with reduced complex I function. Genetics 138:855–863

    PubMed  CAS  Google Scholar 

  • Marienfeld JR, Unseld M, Brandt P, Brennicke A (1997) Mosaic open reading frames in the Arabidopsis ­thaliana mitochondrial genome. Biol Chem 378:859–862

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Zapater JM, Gil P, Capel J, Somerville CR (1992) Mutations at the Arabidopsis CHM locus promote rearrangements of the mitochondrial genome. Plant Cell 4:889–899

    PubMed  CAS  Google Scholar 

  • Matera J, Monroe J, Smelser W, Gabay-Laughnan S, Newton KJ (2011) Unique changes in mitochondrial genomes associated with reversion of S-type cytoplasmic male sterility in maize. PLoS ONE 6:e23405

    Article  PubMed  CAS  Google Scholar 

  • Moison M, Roux F, Quadrado M, Duval R, Ekovich M, Le DH, Verzaux M, Budar F (2010) Cytoplasmic phylogeny and evidence of cyto-nuclear co-adaptation in Arabidopsis thaliana. Plant J 63:728–738

    Article  PubMed  CAS  Google Scholar 

  • Murai K, Takumi S, Koga H, Ogihara Y (2002) Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat. Plant J 29:169–181

    Article  PubMed  Google Scholar 

  • Newton KJ, Coe EH (1986) Mitochondrial DNA changes in abnormal growth (nonchromosomal stripe) mutants of maize. Proc Natl Acad Sci USA 83:7363–7366

    Article  PubMed  CAS  Google Scholar 

  • Newton KJ, Courtney KM (1991) Molecular analysis of mitochondria from teosinte-cytoplasm-associated minature. Maydica 36:153–159

    Google Scholar 

  • Newton KJ, Walbot V (1985) Maize mitochondria synthesize organ-specific polypeptides. Proc Natl Acad Sci USA 82:6879–6883

    Article  PubMed  CAS  Google Scholar 

  • Newton KJ, Knudsen C, Gabay-Laughnan S, Laughnan JR (1990) An abnormal growth mutant in maize has a defective mitochondrial cytochrome oxidase gene. Plant Cell 2:107–113

    PubMed  CAS  Google Scholar 

  • Newton KJ, Winberg B, Yamato K, Lupold S, Stern DB (1995) Evidence for a novel mitochondrial promoter preceding the cox2 gene of perennial teosintes. EMBO J 14:585–593

    PubMed  CAS  Google Scholar 

  • Newton KJ, Mariano JM, Gibson CM, Kuzmin E, Gabay-Laughnan S (1996) Involvement of S2 episomal sequences in the generation of NCS4 deletion mutation in maize mitochondria. Dev Genet 19:277–286

    Article  PubMed  CAS  Google Scholar 

  • Newton KJ, Gabay-Laughnan S, De Paepe R (2004) Mitochondrial mutations in plants. In: Day DA, Millar AH, Whelan J (eds) Plant mitochondria: from genome to function. Kluwer Academic, Dordrecht, pp 121–142

    Google Scholar 

  • Newton KJ, Stern DB, Gabay-Laughnan S (2009) Mitochondria and chloroplasts. In: Bennetzen JL, Hake SC (eds) Handbook of maize: genetics and genomics. Springer, New York, pp 481–504

    Google Scholar 

  • Ngangkham U, Parida SK, De S, Kumar KAR, Singh AK, Singh NK, Mohaptra T (2010) Genic markers for wild abortive (WA) cytoplasm based male sterility and its fertility restoration in rice. Mol Breed 26:275–292

    Article  CAS  Google Scholar 

  • Oro A, Newton KJ, Walbot V (1985) Molecular analysis of the inheritance and stability of the mitochondrial genome of an inbred line of maize. Theor Appl Genet 70:287–293

    Article  CAS  Google Scholar 

  • O’Toole N, Hattori M, Andres C, Iida K, Lurin C, Schmitz-Linneweber C, Sugita M, Small I (2008) On the expansion of the pentatricopeptide repeat gene family in plants. Mol Biol Evol 25:1120–1128

    Article  PubMed  CAS  Google Scholar 

  • Paillard M, Sederoff RR, Levings CS III (1985) Nucleotide sequence of the S-1 mitochondrial DNA from the S cytoplasm of maize. EMBO J 4:1125–1128

    PubMed  CAS  Google Scholar 

  • Palmer JD, Shields CR (1984) Tripartite structure of the Brassica campestris mitochondrial genome. Nature 307:437–440

    Article  CAS  Google Scholar 

  • Parkinson CL, Mower JP, Qiu YL, Shirk AJ, Song K, Young ND, DePamphilis CW, Palmer JD (2005) Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae. BMC Evol Biol 5:73

    Article  PubMed  CAS  Google Scholar 

  • Pineau B, Mathieu C, Gerard-Hirne C, De Paepe R, Chetrit P (2005) Targeting the NAD7 subunit to mitochondria restores a functional complex I and a wild type phenotype in the Nicotiana sylvestris CMS II mutant lacking nad7. J Biol Chem 280:25994–26001

    Article  PubMed  CAS  Google Scholar 

  • Pla M, Mathieu C, De Paepe R, Chetrit P, Vedel F (1995) Deletion of the last two exons of the mitochondrial nad7 gene results in lack of the NAD7 polypeptide in a Nicotiana sylvestris CMS mutant. Mol Gen Genet 248:79–88

    Article  PubMed  CAS  Google Scholar 

  • Pring DR, Levings CS III, Hu WW, Timothy DH (1977) Unique DNA associated with mitochondria in the “S”-type cytoplasm of male-sterile maize. Proc Natl Acad Sci USA 74:2904–2908

    Article  PubMed  CAS  Google Scholar 

  • Saha D, Prasad AM, Srinivasan R (2007) Pentatrico­peptide repeat proteins and their emerging roles in plants. Plant Physiol Biochem 45:521–534

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto W, Kondo H, Murata M, Motoyoshi F (1996) Altered mitochondrial gene expression in a maternal distorted leaf mutant of Arabidopsis induced by chloroplast mutator. Plant Cell 8:1377–1390

    PubMed  CAS  Google Scholar 

  • Sandhu AP, Abdelnoor RV, Mackenzie SA (2007) Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants. Proc Natl Acad Sci USA 104:1766–1770

    Article  PubMed  CAS  Google Scholar 

  • Sarria R, Lyznik A, Vallejos CE, Mackenzie SA (1998) A cytoplasmic male sterility-associated mitochondrial peptide in common bean is post-translationally regulated. Plant Cell 10:1217–1228

    PubMed  CAS  Google Scholar 

  • Satoh M, Kubo T, Nishizawa S, Estiati A, Itchoda N, Mikami T (2004) The cytoplasmic male-sterile type and normal type mitochondrial genomes of sugar beet share the same complement of genes of known function but differ in the content of expressed ORFs. Mol Genet Genomics 272:247–256

    Article  PubMed  CAS  Google Scholar 

  • Schardl CL, Lonsdale DM, Pring DR, Rose KR (1984) Linearization of maize mitochondrial chromosomes by recombination with linear episomes. Nature 310:292–296

    Article  CAS  Google Scholar 

  • Schardl CL, Pring DR, Lonsdale DM (1985) Mitochondrial DNA rearrangements associated with fertile revertants of S-type male-sterile maize. Cell 43:361–368

    Article  PubMed  CAS  Google Scholar 

  • Schertz KF, Sotomayor-Rios A, Torres-Cardona S (1989) Cytoplasmic-nuclear male sterility–opportunities in breeding and genetics. Proc Grain Sorg Res Util Conf 16:175–186

    Google Scholar 

  • Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670

    Article  PubMed  CAS  Google Scholar 

  • Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3:175–180

    Article  Google Scholar 

  • Shedge V, Arrieta-Montiel M, Christensen AC, Mackenzie SA (2007) Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs. Plant Cell 19:1251–1264

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Brown GG (1991) Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondrial gene region. Plant Cell 3:1349–1362

    PubMed  CAS  Google Scholar 

  • Singh M, Brown GG (1993) Characterization of expression of a mitochondrial gene region associated with the Brassica “Polima” CMS: developmental influences. Curr Genet 24:316–322

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Laughnan JR (1972) Instability of S male-sterile cytoplasm in maize. Genetics 71:607–620

    PubMed  CAS  Google Scholar 

  • Singh M, Hamel N, Menassa R, Li XQ, Young B, Jean M, Landry BS, Brown GG (1996) Nuclear genes associated with a single Brassica CMS restorer locus influence transcripts of three different mitochondrial gene regions. Genetics 143:505–516

    PubMed  CAS  Google Scholar 

  • Skibbe DS, Schnable PS (2005) Male sterility in maize. Maydica 50:367–376

    Google Scholar 

  • Small ID, Peeters N (2000) The PPR motif – a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25:46–47

    Article  PubMed  CAS  Google Scholar 

  • Small ID, Isaac PG, Leaver CJ (1987) Stoichiometric differences in DNA molecules containing the atpA gene suggest mechanisms for the generation of mitochondrial genome diversity in maize. EMBO J 6:865–869

    PubMed  CAS  Google Scholar 

  • Small ID, Earle ED, Escote-Carlson LJ, Gabay-Laughnan S, Laughnan JR, Leaver CJ (1988) A comparison of cytoplasmic revertants to fertility from different CMS-S maize sources. Theor Appl Genet 76:609–618

    Article  Google Scholar 

  • Small I, Suffolk R, Leaver CJ (1989) Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58:69–76

    Article  PubMed  CAS  Google Scholar 

  • Smith RL, Chowdhury MKU, Pring DR (1987) Mitochondrial DNA rearrangements in Pennisetum associated with reversion from cytoplasmic male sterility to fertility. Plant Mol Biol 9:277–286

    Article  CAS  Google Scholar 

  • Song J, Hedgcoth C (1994a) A chimeric gene (orf256) is expressed as protein only in cytoplasmic male-sterile lines of wheat. Plant Mol Biol 26:535–539

    Article  PubMed  CAS  Google Scholar 

  • Song J, Hedgcoth C (1994b) Influence of nuclear background on transcription of a chimeric gene (orf256) and cox I in fertile and cytoplasmic male sterile wheats. Genome 37:203–209

    Article  PubMed  CAS  Google Scholar 

  • Spassova M, Moneger F, Leaver CJ, Petrov P, Atanassov A, Nijkamp H, Hille J (1994) Characterisation and expression of the mitochondrial genome of a new type of cytoplasmic male-sterile sunflower. Plant Mol Biol 26:1819–1831

    Article  PubMed  CAS  Google Scholar 

  • Tadege M, Dupuis II, Kuhlemeier C (1999) Ethanolic fermentation: new functions for an old pathway. Trends Plant Sci 4:320–325

    Article  PubMed  Google Scholar 

  • Tang HV, Pring DR, Shaw LC, Salazar RA, Muza FR, Yan B, Schertz KF (1996) Transcript processing internal to a mitochondrial open reading frame is correlated with fertility restoration in male-sterile sorghum. Plant J 10:123–133

    Article  PubMed  CAS  Google Scholar 

  • Tang HV, Chang R, Pring DR (1998) Cosegregation of single genes associated with fertility restoration and transcript processing of sorghum mitochondrial orf107 and urf209. Genetics 150:383–391

    PubMed  CAS  Google Scholar 

  • Teixeira RT, Farbos I, Glimelius K (2005) Expression levels of meristem identity and homeotic genes are modified by nuclear-mitochondrial interactions in alloplasmic male-sterile lines of Brassica napus. Plant J 42:731–742

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski P, Rogmann P, Geiger HH (1986) Molecular analysis of mitochondrial DNA from rye (Secale cerale L.). Theor Appl Genet 72:695–699

    Article  CAS  Google Scholar 

  • Umbeck P, Gengenbach BG (1983) Reversion of male-sterile T cytoplasm maize to male fertility in tissue culture. Crop Sci 23:584–588

    Article  CAS  Google Scholar 

  • Uyttewaal M, Arnal N, Quadrado M, Martin-Canadell A, Vrielynck N, Hiard S, Gherbi H, Bendahmane A, Budar F, Mireau H (2008) Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility. Plant Cell 20:3331–3345

    Article  PubMed  CAS  Google Scholar 

  • Vermel M, Guermann B, Delage L, Grienenberger JM, Maréchal-Drouard L, Gualberto JM (2002) A family of RRM-type RNA-binding proteins specific to plant mitochondria. Proc Natl Acad Sci USA 99:5866–5871

    Article  PubMed  CAS  Google Scholar 

  • Wang HM, Ketela T, Keller WA, Gleddie SC, Brown GG (1995) Genetic correlation of the orf224/atp6 gene region with Polima CMS in Brassica somatic hybrids. Plant Mol Biol 27:801–807

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D et al (2006) Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18:676–687

    Article  PubMed  CAS  Google Scholar 

  • Ward GC (1995) The Texas male-sterile cytoplasm of maize. In: Levings CS III, Vasil IK (eds) The molecular biology of plant mitochondria. Kluwer Academic, Norwell, pp 433–459

    Chapter  Google Scholar 

  • Warmke HE, Lee SLJ (1977) Mitochondrial degeneration in Texas cytoplasmic male-sterile corn anthers. J Hered 68:213–222

    Google Scholar 

  • Weissinger AK, Timothy DH, Levings CS III, Goodman MM (1983) Patterns of mitochondrial DNA variation in indigenous maize races of Latin America. Genetics 104:365–379

    PubMed  CAS  Google Scholar 

  • Wen L, Chase CD (1999) Pleiotropic effects of a nuclear restorer-of-fertility locus on mitochondrial transcripts in male-fertile and S male-sterile maize. Curr Genet 35:521–526

    Article  PubMed  CAS  Google Scholar 

  • Wen L, Ruesch KL, Ortega VM, Kamps TL, Gabay-Laughnan S, Chase CD (2003) A nuclear restorer-of-fertility mutation disrupts accumulation of mitochondrial ATP synthase subunit a in developing pollen of S male-sterile maize. Genetics 165:771–779

    PubMed  CAS  Google Scholar 

  • Wintz H, Chen H-C, Sutton CA, Conley CA, Cobb A, Ruth D, Hanson MR (1995) Expression of the CMS-associated urfS sequence in transgenic petunia and tobacco. Plant Mol Biol 28:83–92

    Article  PubMed  CAS  Google Scholar 

  • Wise RP, Pring DR, Gengenbach BG (1987a) Mutation to male fertility and toxin insensitivity in Texas (T)-cytoplasm maize is associated with a frameshift in a mitochondrial open reading frame. Proc Natl Acad Sci USA 84:2858–2862

    Article  PubMed  CAS  Google Scholar 

  • Wise RP, Fliss AE, Pring DR, Gengenbach BG (1987b) Urf-13 of T cytoplasm maize mitochondria encodes a 13 kD polypeptide. Plant Mol Biol 9:121–126

    Article  CAS  Google Scholar 

  • Xu X-B, Liu Z-X, Zhang D-F, Liu Y, Song W-B, Li J-S, Dai J-R (2009) Isolation and analysis of rice Rf1-Orthologus PPR genes co-segregating with Rf3 in maize. Plant Mol Biol Rep 27:511–517

    Article  CAS  Google Scholar 

  • Yamato KT, Newton K (1999) Heteroplasmy and homoplasmy for maize mitochondrial mutants: a rare homoplasmic nad4 deletion mutant plant. J Hered 90:369–373

    Article  Google Scholar 

  • Zabala G, Gabay-Laughnan S, Laughnan JR (1997) The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics 147:847–860

    PubMed  CAS  Google Scholar 

  • Zaegel V, Guermann B, Le Ret M, Andres C, Meyer D, Erhardt M, Canaday J, Gualberto JM, Imbault P (2006) The plant-specific ssDNA binding protein OSB1 is involved in the stoichiometric transmission of mitochondrial DNA in Arabidopsis. Plant Cell 18:3548–3563

    Article  PubMed  CAS  Google Scholar 

  • Zubko MK (2004) Mitochondrial tuning fork in nuclear homeotic functions. Trends Plant Sci 9:61–64

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work from the authors’ laboratories was funded by grants from the U.S. National Science Foundation and the U.S. Department of Agriculture. We thank I. Small, H. Millar, J. Whelan and their group members at the Plant Energy Biology Centre in Perth, Australia for helpful discussions with KJN. We thank T. Langewisch, A. Lough, J. Flynn and M. Green for help with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen J. Newton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gabay-Laughnan, S., Newton, K.J. (2012). Plant Mitochondrial Mutations. In: Bock, R., Knoop, V. (eds) Genomics of Chloroplasts and Mitochondria. Advances in Photosynthesis and Respiration, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2920-9_12

Download citation

Publish with us

Policies and ethics