Skip to main content

Nutritional Compounds as Chemopreventive Agents by Proteasome Inhibition

  • Chapter
  • First Online:
Nutrition, Diet and Cancer

Abstract

Nutritional phytochemicals, distributed throughout the plant kingdom, possess anticancer activities associated with their consumption. This chapter will focus on the cellular activities of phytochemicals, their potential molecular targets and biological effects on cancer cells with a focus on the proteasome inhibition. The proteasome is a large multicatalytic, proteinase complex located in the cytosol and the nucleus of eukaryotic cells. The ubiquitin-proteasome system is responsible for the degradation of most intracellular proteins and therefore plays an essential regulatory role in critical cellular processes including cell cycle progression, proliferation, differentiation, angiogenesis, and apoptosis. Normal cell function and homeostasis depends on proteasome activity, however, cancer cells are more sensitive to proteasome inhibitors than normal cells, indicating that the inhibition of the ubiquitin-proteasome system could be used as an approach for cancer therapy and understanding chemoprevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhami VM, Siddiqui IA et al (2004) Oral consumption of green tea polyphenols inhibits insulin-like growth factor-I-induced signaling in an autochthonous mouse model of prostate cancer. Cancer Res 64(23):8715–8722

    Article  PubMed  CAS  Google Scholar 

  • Agarwal R, Diwanay S et al (1999) Studies on immunomodulatory activity of Withania somnifera (Ashwagandha) extracts in experimental immune inflammation. J Ethnopharmacol 67(1):27–35

    Article  PubMed  CAS  Google Scholar 

  • Ahmad M, Saleem S et al (2005) Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol 24(3):137–147

    Article  PubMed  Google Scholar 

  • Allen NE, Sauvaget C et al (2004) A prospective study of diet and prostate cancer in Japanese men. Cancer Causes & Control: CCC 15(9):911–920

    Article  Google Scholar 

  • An B, Goldfarb RH et al (1998) Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death Differ 5(12):1062–1075

    Article  PubMed  CAS  Google Scholar 

  • Bendell J, Goldberg RM (2007) Targeted agents in the treatment of pancreatic cancer: history and lessons learned. Curr Opin Oncol 19(4):390–395

    Article  PubMed  CAS  Google Scholar 

  • Bettuzzi S, Brausi M et al (2006) Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. Cancer Res 66(2):1234–1240

    Article  PubMed  CAS  Google Scholar 

  • Birt DF, Mitchell D et al (1997) Inhibition of ultraviolet light induced skin carcinogenesis in SKH-1 mice by apigenin, a plant flavonoid. Anticancer Res 17(1A):85–91

    PubMed  CAS  Google Scholar 

  • Blagosklonny MV (2002) P53: an ubiquitous target of anticancer drugs. Int J Cancer 98(2):161–166

    Article  PubMed  CAS  Google Scholar 

  • Cai X, Ye T et al (2001) Luteolin induced G2 phase cell cycle arrest and apoptosis on non-small cell lung cancer cells. Toxicol In Vitro 25(7):1385–1391

    Article  CAS  Google Scholar 

  • Cappelletti V, Fioravanti L et al (2000) Genistein blocks breast cancer cells in the G(2)M phase of the cell cycle. J Cell Biochem 79(4):594–600

    Article  PubMed  CAS  Google Scholar 

  • Carver JR, Shapiro CL et al (2007) American Society of Clinical Oncology clinical evidence review on the ongoing care of adult cancer survivors: cardiac and pulmonary late effects. J Clin Oncol 25(25):3991–4008

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Zhu QY et al (2001) Degradation of green tea catechins in tea drinks. J Agric Food Chem 49(1):477–482

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Lee J et al (2004) Proteasome-mediated destruction of the cyclin a/cyclin-dependent kinase 2 complex suppresses tumor cell growth in vitro and in vivo. Cancer Res 64(11):3949–3957

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Daniel KG et al (2005) Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem Pharmacol 69(10):1421–1432

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Chen MS et al (2007) Structure-proteasome-inhibitory activity relationships of dietary flavonoids in human cancer cells. Front Biosci 12:1935–1945

    Article  PubMed  CAS  Google Scholar 

  • Cherng JM, Shieh DE et al (2007) Chemopreventive effects of minor dietary constituents in common foods on human cancer cells. Biosci Biotechnol Biochem 71(6):1500–1504

    Article  PubMed  CAS  Google Scholar 

  • Choi YH, Lee WH et al (2000) p53-independent induction of p21 (WAF1/CIP1), reduction of cyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells. Jap J Cancer Res: Gann 91(2):164–173

    Article  CAS  Google Scholar 

  • Choi JS, Choi YJ et al (2004) Flavones mitigate tumor necrosis factor-alpha-induced adhesion molecule upregulation in cultured human endothelial cells: role of nuclear factor-kappa B. J Nutr 134(5):1013–1019

    PubMed  CAS  Google Scholar 

  • Ciechanover A (1998) The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 17(24):7151–7160

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A, Orian A et al (2000a) Ubiquitin-mediated proteolysis: biological regulation via destruction. BioEssays 22(5):442–451

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A, Orian A et al (2000b) The ubiquitin-mediated proteolytic pathway: mode of action and clinical implications. J Cell Biochem Suppl 34:40–51

    Article  PubMed  CAS  Google Scholar 

  • Deng C, Zhang P et al (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82(4):675–684

    Article  PubMed  CAS  Google Scholar 

  • Devi PU, Sharada AC et al (1992) In vivo growth inhibitory effect of Withania somnifera (Ashwagandha) on a transplantable mouse tumor, Sarcoma 180. Indian J Exp Biol 30(3):169–172

    PubMed  CAS  Google Scholar 

  • Dhillon N, Aggarwal BB et al (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 14(14):4491–4499

    Article  PubMed  CAS  Google Scholar 

  • Diehl JA, Zindy F et al (1997) Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev 11(8):957–972

    Article  PubMed  CAS  Google Scholar 

  • Dosenko VE, Nagibin VS et al (2006) The influence of quercetin on the activity of purified 20S, 26S proteasome and proteasomal activity in isolated cardiomyocytes. Biomed Khim 52(2):138–145

    PubMed  CAS  Google Scholar 

  • Drexler HC (1997) Activation of the cell death program by inhibition of proteasome function. Proc Natl Acad Sci USA 94(3):855–860

    Article  PubMed  CAS  Google Scholar 

  • Drexler HC, Risau W et al (2000) Inhibition of proteasome function induces programmed cell death in proliferating endothelial cells. FASEB J 14(1):65–77

    PubMed  CAS  Google Scholar 

  • Elmore E, Siddiqui S et al (2005) Correlation of in vitro chemopreventive efficacy data from the human epidermal cell assay with animal efficacy data and clinical trial plasma levels. J Cell Biochem 95(3):571–588

    Article  PubMed  CAS  Google Scholar 

  • Fang MZ, Wang Y et al (2003) Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63(22):7563–7570

    PubMed  CAS  Google Scholar 

  • Garcea G, Jones DJ et al (2004) Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br J Cancer 90(5):1011–1015

    Article  PubMed  CAS  Google Scholar 

  • Garg AK, Buchholz TA et al (2005) Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxid Redox Signal 7(11–12):1630–1647

    Article  PubMed  CAS  Google Scholar 

  • Glotzer M, Murray AW et al (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349(6305):132–138

    Article  PubMed  CAS  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281(5381):1309–1312

    Article  PubMed  CAS  Google Scholar 

  • Groll M, Heinemeyer W et al (1999) The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proc Natl Acad Sci USA 96(20):10976–10983

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Hussain T et al (2003) Molecular pathway for (-)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch Biochem Biophys 410(1):177–185

    Article  PubMed  CAS  Google Scholar 

  • Gupta SK, Mohanty I et al (2004) Cardioprotection from ischemia and reperfusion injury by Withania somnifera: a hemodynamic, biochemical and histopathological assessment. Mol Cell Biochem 260(1–2):39–47

    PubMed  Google Scholar 

  • Hertog MG, Hollman PC et al (1993) Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands. Nutr Cancer 20(1):21–29

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Tajima K et al (2001) Regular consumption of green tea and the risk of breast cancer recurrence: follow-up study from the Hospital-based Epidemiologic Research Program at Aichi Cancer Center (HERPACC), Japan. Cancer Lett 167(2):175–182

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Sasazuki S et al (2009) Green tea consumption and gastric cancer in Japanese: a pooled analysis of six cohort studies. Gut 58(10):1323–1332

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki M, Inoue M et al (2010) Green tea drinking and subsequent risk of breast cancer in a population to based cohort of Japanese women. Breast Cancer Res 12(5):R88

    PubMed  Google Scholar 

  • Jain MG, Hislop GT et al (1998) Alcohol and other beverage use and prostate cancer risk among Canadian men. Int J Cancer 78(6):707–711

    Article  PubMed  CAS  Google Scholar 

  • Jankun J, Selman SH et al (1997) Why drinking green tea could prevent cancer. Nature 387(6633):561

    Article  PubMed  CAS  Google Scholar 

  • Jayaprakasam B, Zhang Y et al (2003) Growth inhibition of human tumor cell lines by withanolides from Withania somnifera leaves. Life Sci 74(1):125–132

    Article  PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R et al (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300

    Article  PubMed  Google Scholar 

  • Jian L, Xie LP et al (2004) Protective effect of green tea against prostate cancer: a case-control study in southeast China. Int J Cancer 108(1):130–135

    Article  PubMed  CAS  Google Scholar 

  • Kane RC, Farrell AT et al (2006) United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin Cancer Res 12(10):2955–2960

    Article  PubMed  CAS  Google Scholar 

  • Katayose Y, Kim M et al (1997) Promoting apoptosis: a novel activity associated with the cyclin-dependent kinase inhibitor p27. Cancer Res 57(24):5441–5445

    PubMed  CAS  Google Scholar 

  • Kazi A, Daniel KG et al (2003) Inhibition of the proteasome activity, a novel mechanism associated with the tumor cell apoptosis-inducing ability of genistein. Biochem Pharmacol 66(6):965–976

    Article  PubMed  CAS  Google Scholar 

  • Kemberling JK, Hampton JA et al (2003) Inhibition of bladder tumor growth by the green tea derivative epigallocatechin-3-gallate. J Urol 170(3):773–776

    Article  PubMed  CAS  Google Scholar 

  • Khan MS, Halagowder D et al (2011) Methylated chrysin induces co-ordinated attenuation of the canonical Wnt and NF-kB signaling pathway and upregulates apoptotic gene expression in the early hepatocarcinogenesis rat model. Chem Biol Interact 193(1):12–21

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi N, Ohmori K et al (2006) No association between green tea and prostate cancer risk in Japanese men: the Ohsaki Cohort Study. Br J Cancer 95(3):371–373

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Eom JI et al (2007) Protein kinase CK2alpha as an unfavorable prognostic marker and novel therapeutic target in acute myeloid leukemia. Clin Cancer Res 13(3):1019–1028

    Article  PubMed  CAS  Google Scholar 

  • Kuhn D, Lam WH et al (2005) Synthetic peracetate tea polyphenols as potent proteasome inhibitors and apoptosis inducers in human cancer cells. Front Biosci 10:1010–1023

    Article  PubMed  CAS  Google Scholar 

  • Kunnumakkara AB, Anand P et al (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 269(2):199–225

    Article  PubMed  CAS  Google Scholar 

  • Kurahashi N, Sasazuki S et al (2008) Green tea consumption and prostate cancer risk in Japanese men: a prospective study. Am J Epidemiol 167(1):71–77

    Article  PubMed  Google Scholar 

  • Landis-Piwowar KR, Kuhn DJ et al (2005) Evaluation of proteasome-inhibitory and apoptosis-inducing potencies of novel (-)-EGCG analogs and their prodrugs. Int J Mol Med 15(4):735–742

    PubMed  CAS  Google Scholar 

  • Landis-Piwowar KR, Milacic V et al (2006) The proteasome as a potential target for novel anticancer drugs and chemosensitizers. Drug Resist Updat 9(6):263–273

    Article  PubMed  CAS  Google Scholar 

  • Landis-Piwowar KR, Huo C et al (2007) A novel prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate as a potential anticancer agent. Cancer Res 67(9):4303–4310

    Article  PubMed  CAS  Google Scholar 

  • Lee LT, Huang YT et al (2004) Transinactivation of the epidermal growth factor receptor tyrosine kinase and focal adhesion kinase phosphorylation by dietary flavonoids: effect on invasive potential of human carcinoma cells. Biochem Pharmacol 67(11):2103–2114

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Wang CJ et al (2005) Induction apoptosis of luteolin in human hepatoma HepG2 cells involving mitochondria translocation of Bax/Bak and activation of JNK. Toxicol Appl Pharmacol 203(2):124–131

    Article  PubMed  CAS  Google Scholar 

  • Lepley DM, Li B et al (1996) The chemopreventive flavonoid apigenin induces G2/M arrest in keratinocytes. Carcinogenesis 17(11):2367–2375

    Article  PubMed  CAS  Google Scholar 

  • Li B, Dou QP (2000) Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc Natl Acad Sci USA 97(8):3850–3855

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Meng X et al (2003) Enzymology of methylation of tea catechins and inhibition of catechol-O-methyltransferase by (-)-epigallocatechin gallate. Drug Metab Dispos 31(5):572–579

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Gao YT et al (2010) Urinary polyphenols and breast cancer risk: results from the Shanghai Women’s Health Study. Breast Cancer Res Treat 120(3):693–702

    Article  PubMed  CAS  Google Scholar 

  • Manach C, Donovan JL (2004) Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radic Res 38(8):771–785

    Article  PubMed  CAS  Google Scholar 

  • Manach C, Scalbert A et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747

    PubMed  CAS  Google Scholar 

  • Milacic V, Banerjee S et al (2008) Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo. Cancer Res 68(18):7283–7292

    Article  PubMed  CAS  Google Scholar 

  • Mishra LC, Singh BB et al (2000) Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern Med Rev 5(4):334–346

    PubMed  CAS  Google Scholar 

  • Myung SK, Bae WK et al (2009) Green tea consumption and risk of stomach cancer: a meta-analysis of epidemiologic studies. Int J Cancer 124(3):670–677

    Article  PubMed  CAS  Google Scholar 

  • Naasani I, Seimiya H et al (1998) Telomerase inhibition, telomere shortening, and senescence of cancer cells by tea catechins. Biochem Biophys Res Commun 249(2):391–396

    Article  PubMed  CAS  Google Scholar 

  • Nagata C (2010) Factors to consider in the association between soy isoflavone intake and breast cancer risk. J Epidemiol 20(2):83–89

    Article  PubMed  Google Scholar 

  • Nakachi K, Suemasu K et al (1998) Influence of drinking green tea on breast cancer malignancy among Japanese patients. Jap J Cancer Res: Gann 89(3):254–261

    Article  CAS  Google Scholar 

  • Nam S, Smith DM et al (2001) Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J Biol Chem 276(16):13322–13330

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Peran E, Cabezas-Herrera J et al (2005) The antifolate activity of tea catechins. Cancer Res 65(6):2059–2064

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus T, Pabst S et al (2004) Inhibition of the vascular-endothelial growth factor-induced intracellular signaling and mitogenesis of human endothelial cells by epigallocatechin-3 gallate. Eur J Pharmacol 483(2–3):223–227

    Article  PubMed  CAS  Google Scholar 

  • Orlowski RZ, Eswara JR et al (1998) Tumor growth inhibition induced in a murine model of human Burkitt’s lymphoma by a proteasome inhibitor. Cancer Res 58(19):4342–4348

    PubMed  CAS  Google Scholar 

  • Owais M, Sharad KS et al (2005) Antibacterial efficacy of Withania somnifera (ashwagandha) an indigenous medicinal plant against experimental murine salmonellosis. Phytomedicine 12(3):229–235

    Article  PubMed  CAS  Google Scholar 

  • Perkins ND (2000) The Rel/NF-kappa B family: friend and foe. Trends Biochem Sci 25(9):434–440

    Article  PubMed  CAS  Google Scholar 

  • Phan T, Yu XM et al (2011) Antiproliferative effect of chrysin on anaplastic thyroid cancer. J Surg Res 170(1):84–88

    Article  PubMed  CAS  Google Scholar 

  • Polyak K, Kato JY et al (1994) p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 8(1):9–22

    Article  PubMed  CAS  Google Scholar 

  • Ramos S (2007) Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem 18(7):427–442

    Article  PubMed  CAS  Google Scholar 

  • Rasool M, Varalakshmi P (2006) Immunomodulatory role of Withania somnifera root powder on experimental induced inflammation: an in vivo and in vitro study. Vascul Pharmacol 44(6):406–410

    Article  PubMed  CAS  Google Scholar 

  • Richardson PG, Sonneveld P et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352(24):2487–2498

    Article  PubMed  CAS  Google Scholar 

  • Romanova D, Vachalkova A et al (2001) Study of antioxidant effect of apigenin, luteolin and quercetin by DNA protective method. Neoplasma 48(2):104–107

    PubMed  CAS  Google Scholar 

  • Ruschak AM, Slassi M et al (2011) Novel proteasome inhibitors to overcome bortezomib resistance. J Natl Cancer Inst 103(13):1007–1017

    Article  PubMed  CAS  Google Scholar 

  • Russo GL (2007) Ins and outs of dietary phytochemicals in cancer chemoprevention. Biochem Pharmacol 74(4):533–544

    Article  PubMed  CAS  Google Scholar 

  • Sarkar FH, Li Y (2002) Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Rev 21(3–4):265–280

    Article  PubMed  CAS  Google Scholar 

  • Sarkar FH, Adsule S et al (2006) The role of genistein and synthetic derivatives of isoflavone in cancer prevention and therapy. Mini Rev Med Chem 6(4):401–407

    Article  PubMed  CAS  Google Scholar 

  • Seely D, Mills EJ et al (2005) The effects of green tea consumption on incidence of breast cancer and recurrence of breast cancer: a systematic review and meta-analysis. Integr Cancer Ther 4(2):144–155

    Article  PubMed  Google Scholar 

  • Selvendiran K, Koga H et al (2006) Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells: an implication for the antitumor potential of flavonoids. Cancer Res 66(9):4826–4834

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9(10):1149–1163

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512

    Article  PubMed  CAS  Google Scholar 

  • Shimizu M, Deguchi A et al (2005) (-)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin Cancer Res 11(7):2735–2746

    Article  PubMed  CAS  Google Scholar 

  • Shrubsole MJ, Lu W et al (2009) Drinking green tea modestly reduces breast cancer risk. J Nutr 139(2):310–316

    PubMed  CAS  Google Scholar 

  • Sim GS, Lee BC et al (2007) Structure activity relationship of antioxidative property of flavonoids and inhibitory effect on matrix metalloproteinase activity in UVA-irradiated human dermal fibroblast. Arch Pharm Res 30(3):290–298

    Article  PubMed  CAS  Google Scholar 

  • Smith DM, Daniel KG et al (2004) Docking studies and model development of tea polyphenol proteasome inhibitors: applications to rational drug design. Proteins 54(1):58–70

    Article  PubMed  CAS  Google Scholar 

  • Soligo D, Servida F et al (2001) The apoptogenic response of human myeloid leukaemia cell lines and of normal and malignant haematopoietic progenitor cells to the proteasome inhibitor PSI. Br J Haematol 113(1):126–135

    Article  PubMed  CAS  Google Scholar 

  • Sonoda T, Nagata Y et al (2004) A case-control study of diet and prostate cancer in Japan: possible protective effect of traditional Japanese diet. Cancer Sci 95(3):238–242

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Nam S et al (2001) CEP1612, a dipeptidyl proteasome inhibitor, induces p21WAF1 and p27KIP1 expression and apoptosis and inhibits the growth of the human lung adenocarcinoma A-549 in nude mice. Cancer Res 61(4):1280–1284

    PubMed  CAS  Google Scholar 

  • Sun CL, Yuan JM et al (2006) Green tea, black tea and breast cancer risk: a meta-analysis of epidemiological studies. Carcinogenesis 27(7):1310–1315

    Article  PubMed  CAS  Google Scholar 

  • Trock BJ, Hilakivi-Clarke L et al (2006) Meta-analysis of soy intake and breast cancer risk. J Natl Cancer Inst 98(7):459–471

    Article  PubMed  CAS  Google Scholar 

  • von Metzler I, Krebbel H et al (2009) Curcumin diminishes human osteoclastogenesis by inhibition of the signalosome-associated I kappaB kinase. J Cancer Res Clin Oncol 135(2):173–179

    Article  CAS  Google Scholar 

  • Walle T, Otake Y et al (2001) Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br J Clin Pharmacol 51(2):143–146

    PubMed  CAS  Google Scholar 

  • Wang YC, Bachrach U (2002) The specific anti-cancer activity of green tea (-)-epigallocatechin-3-gallate (EGCG). Amino Acids 22(2):131–143

    Article  PubMed  Google Scholar 

  • Watanabe S, Yamaguchi M et al (1998) Pharmacokinetics of soybean isoflavones in plasma, urine and feces of men after ingestion of 60 g baked soybean powder (kinako). J Nutr 128(10):1710–1715

    PubMed  CAS  Google Scholar 

  • Weng MS, Ho YS et al (2005) Chrysin induces G1 phase cell cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: involvement of p38 mitogen-activated protein kinase. Biochem Pharmacol 69(12):1815–1827

    Article  PubMed  CAS  Google Scholar 

  • Won KA, Reed SI (1996) Activation of cyclin E/CDK2 is coupled to site-specific autophosphorylation and ubiquitin-dependent degradation of cyclin E. EMBO J 15(16):4182–4193

    PubMed  CAS  Google Scholar 

  • Wu AH, Yu MC et al (2003) Green tea and risk of breast cancer in Asian Americans. Int J Cancer 106(4):574–579

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Sobue T et al (2003) Soy, isoflavones, and breast cancer risk in Japan. J Natl Cancer Inst 95(12):906–913

    Article  PubMed  CAS  Google Scholar 

  • Yan GR, Xiao CL et al (2010) Global phosphoproteomic effects of natural tyrosine kinase inhibitor, genistein, on signaling pathways. Proteomics 10(5):976–986

    PubMed  CAS  Google Scholar 

  • Yang H, Chen D et al (2006) Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res 66(9):4758–4765

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Shi G et al (2007) The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from “Indian winter cherry”. Mol Pharmacol 71(2):426–437

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Zonder JA et al (2009) Clinical development of novel proteasome inhibitors for cancer treatment. Expert Opin Investig Drugs 18(7):957–971

    Article  PubMed  CAS  Google Scholar 

  • Yuan JM, Koh WP et al (2005) Green tea intake, ACE gene polymorphism and breast cancer risk among Chinese women in Singapore. Carcinogenesis 26(8):1389–1394

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Huang J et al (2009) Dietary intakes of mushrooms and green tea combine to reduce the risk of breast cancer in Chinese women. Int J Cancer 124(6):1404–1408

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kristin Landis-Piwowar or Q. Ping Dou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Landis-Piwowar, K., Smerczak, E., Zuo, J., Dou, Q.P. (2012). Nutritional Compounds as Chemopreventive Agents by Proteasome Inhibition. In: Shankar, S., Srivastava, R. (eds) Nutrition, Diet and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2923-0_6

Download citation

Publish with us

Policies and ethics