Skip to main content

Origin of Life and Panspermia

  • Chapter
  • First Online:
Genesis - In The Beginning

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 22))

Abstract

Arguments are presented to support the view that the origin of life and the origin of the universe are inextricably linked. A single origin of life occurring in a primordial cometary-type body may be amplified and conveyed throughout the expanding universe in comets via the processes of panspermia. Comets serve as transporters and incubators of microbial life. The PAH signatures in interstellar material within our galaxy and in external galaxies plausibly represent the detritus of life – not prebiology as it is currently believed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel DL (2009) The universal plausibility metric (UPM) & principle (UPP). Theor Biol Med Model 6(1):27. Open access at http://www.tbiomed.com/content/6/1/27

  • Abel DL, Trevors JT (2006) Self-organization vs. Self-ordering events in life-origin models. Phys Life Rev 3:211

    Article  Google Scholar 

  • Arrhenius S (1903) The propagation of life in space. Die Umschau 7:481

    Google Scholar 

  • Arrhenius S (1908) Worlds in the making. Harper, London

    Google Scholar 

  • Bidle K, Lee S-H, Marchant DR, Falkowski PG (2007) Fossil genes and microbes in the oldest ice on earth. Proc Natl Acad Sci USA 104(33):13455

    Article  PubMed  CAS  Google Scholar 

  • Bohler C, Nielson PE, Orgel LE (1995) Template switching between PNA and RNA. Nature 376:578–581

    Article  PubMed  CAS  Google Scholar 

  • Brandl BR et al (2006) The mid-infrared properties of starburst galaxies from Spitzer-IRS spectroscopy. Astrophys J 653:1129

    Article  CAS  Google Scholar 

  • Cairns-Smith AG (1966) The origin of life and the nature of the primitive gene. J Theor Biol 10:53

    Article  PubMed  CAS  Google Scholar 

  • Cano RJ, Borucki M (1995) Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science 268:1060

    Article  PubMed  CAS  Google Scholar 

  • Cataldo F, Keheyan Y, Heymann D (2002) A new model for the interpretation of the unidentified infrared bands (UIBS) of the diffuse interstellar medium and of the protoplanetary nebulae. Int J Astrobiol 1:79

    CAS  Google Scholar 

  • Claus G, Nagy B, Europa DL (1963) Further observations on the properties of the “organized elements” in carbonaceous chondrites. Ann NY Acad Sci 108:580

    Article  PubMed  CAS  Google Scholar 

  • Crick FHC, Orgel LE (1973) Directed panspermia. Icarus 19:341

    Article  Google Scholar 

  • Crovisier J, Leech K, Bockelée-Morvan D et al (1997) The spectrum of comet Hale-Bopp (C/1995 O1) observed with the infrared space observatory at 2.9 astronomical units from the Sun. Science 275:1904

    Article  PubMed  CAS  Google Scholar 

  • Darbon S, Perrin J-M, Sivan J-P (1998) Extended red emission (ERE) detected in the 30 Doradus nebula. Astron Astrophys 333:264

    Google Scholar 

  • Furton DG, Witt AN (1992) Extended red emission from dust in planetary nebulae. Astrophys J 386:587

    Article  CAS  Google Scholar 

  • Gezari DY, Schmitz M, Pitts PS et al (1993) Catalogue of infrared observations. NASA, Washington

    Google Scholar 

  • Gibson CH, Schild RE (2009) Hydro-gravitational-dynamics of planets and dark energy. Appl Fluid Mech 2(2):35–41, arXiv:0808.3228

    Google Scholar 

  • Gibson CH, Schild RE, Wickramasinghe NC (2010) Origin of life from primordial planets. Int J Astrobiol 10(2):83–96

    Google Scholar 

  • Gregory PH, Monteith JL (eds) (1967) Airborne microbes – symposium of the society for general microbiology, vol 17. Cambridge University Press, Cambridge

    Google Scholar 

  • Guillois O, Ledoux G, Nenner I et al (1999) Solid interstellar matter: the ISO Revolution. Les Houches, No.11, EDP Sciences, Les Ulis

    Google Scholar 

  • Haldane JBS (1929) The origin of life. Chatto and Windys, London

    Google Scholar 

  • Harris MJ, Wickramasinghe NC, Lloyd D et al (2002) Detection of living cells in stratospheric samples. Proc SPIE 4495:192

    Article  Google Scholar 

  • Hoover RB (2005) In: Hoover RB, Rozanov AY, Paepe RR (eds) Perspectives in astrobiology, vol 366. IOS Press, Amsterdam, p 43

    Google Scholar 

  • Horneck G (1993) Responses of bacillus subtilis spores to space environment: results from experiments in space. Orig Life Evol Biosph 23:37

    Article  PubMed  CAS  Google Scholar 

  • Horneck G, Eschweiler U, Reitz G et al (1995) Biological responses to space: results of the experiment “exobiological unit” of ERA on EURECA I. Adv Space Res 16(8):105

    Article  PubMed  CAS  Google Scholar 

  • Horneck G, Mileikowsky C, Melosh HJ et al (2002) In: Horneck G, Baumstark-Khan C (eds) Astrobiology. The quest for the conditions of life. Springer, Berlin

    Google Scholar 

  • Hoyle F, Wickramasinghe NC (1979) Diseases from space. J.M. Dent, London

    Google Scholar 

  • Hoyle F, Wickramasinghe NC (1980) Evolution from space. J.M. Dent, London

    Google Scholar 

  • Hoyle F, Wickramasinghe NC (1981) Comets - A vehicle for panspermia. In: Ponnamperuma C (ed) Comets and the origin of life, D. Reidel, Dordrecht, p 227

    Google Scholar 

  • Hoyle F, Wickramasinghe NC (1982) Proofs that life is cosmic. Mem Inst Fund Studies Sri Lanka, No. 1 (www.panspermia.org/proofslifeiscosmic.pdf)

  • Hoyle F, Wickramasinghe NC (1991) The theory of cosmic grains. Kluwer Academic Press, Dordrecht

    Book  Google Scholar 

  • Hoyle F, Wickramasinghe NC (1996) Biofluorescence and the extended red emission in astrophysical sources. Astrophys Space Sci 235(343)

    Google Scholar 

  • Hoyle F, Wickramasinghe NC (2000) Astronomical origins of life: steps towards panspermia. Kluwer Academic Press, Dordrecht/Boston

    Google Scholar 

  • Johnson FM (1971) Interstellar molecules and cosmochemistry. Ann NY Acad Sci 194:3

    Article  Google Scholar 

  • Kissel J, Krueger FR (1987) The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1. Nature 326:760

    Article  Google Scholar 

  • Krueger FR, Kissel J (2000) Stern und Weltraum 5:330

    Google Scholar 

  • Krueger FR, Werther W, Kissel J et al (2004) Assignment of quinone derivatives as the main compound class composing ‘interstellar’ grains based on both polarity ions detected by the ‘cometary and interstellar dust Analyser’ (CIDA) onboard the spacecraft STARDUST. Rapid Commun Mass Spectrom 18:103

    Article  PubMed  CAS  Google Scholar 

  • Kwok S (2009) Organic matter in space: from star dust to the solar system. Astrophys Space Sci 319:5–21

    Article  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709

    Article  PubMed  CAS  Google Scholar 

  • Manning CE, Mojzsis SJ, Harrison TM (2006) Geology, age and origin of supracrustal rocks at Akilia, West Greenland. Am J Sci 306:303

    Article  CAS  Google Scholar 

  • Mattila K (1979) Astron Astrophys 78:253

    Google Scholar 

  • Mileikowsky C, Cucinotta FA, Wilson JW et al (2000) Icarus 145: 391

    Google Scholar 

  • Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth. Science 130:245

    Article  PubMed  CAS  Google Scholar 

  • Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409:178

    Article  PubMed  CAS  Google Scholar 

  • Motta V, Mediavilla E, Muñoz JA et al (2002) Detection of the 2175 Å extinction feature at z = 0.83. Astrophys J 574:719

    Article  CAS  Google Scholar 

  • Napier WM, Wickramasinghe JT, Wickramasinghe NC (2007) The origin of life in comets. Int J Astrobiol 6:321

    CAS  Google Scholar 

  • Nicholson WL, Munakata N, Horneck G et al (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548

    Article  PubMed  CAS  Google Scholar 

  • Oparin AI (1953) The origin of life (trans: Margulis S). Dover Publications, New York

    Google Scholar 

  • Orgel LE, Crick FHC (1968) Evolution of genetic apparatus, J Mol Biol 38:381–393

    Google Scholar 

  • Pasteur L (1857) CR Acad Sci 45:913–916

    Google Scholar 

  • Perrin J-M, Darbon S, Sivan J-P (1995) Observation of extended red emission (ERE) in the halo of M82. Astron Astrophys 304:L21

    CAS  Google Scholar 

  • Pflug HD (1984) In: Wickramasinghe NC (ed) Fundamental studies and the future of science. Univ. College Cardiff Press, Cardiff

    Google Scholar 

  • Pizzarello S (2004) Orig Life Evol Biosph 34:25–34

    Google Scholar 

  • Rauf K, Wickramasinghe C (2010) Evidence for biodegradation products in the interstellar medium. Int J Astrobiol 9(1):29–34

    Article  CAS  Google Scholar 

  • Schmitt-Kopplin P et al (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci USA 107(7):2763–2768

    Article  PubMed  CAS  Google Scholar 

  • Shivaji S et al (2009) Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. Int J Syst Evol Biol 59:2977–2986

    Article  CAS  Google Scholar 

  • Sivan J-P. Perrin J-M (1993) Astrophys J 404:258

    Google Scholar 

  • Smith JTD, Draine BT, Dale DA et al (2007) The mid-infrared spectrum of star-forming galaxies: global properties of polyaromatic hydrocarbon emission. Astrophys J 656:770–791

    Google Scholar 

  • Szomouru A, Guhathakurta P (1998) Astrophys J 494:L93

    Google Scholar 

  • Vanysek V, Wickramasinghe NC (1975) Formaldehyde polymers in comets. Astrophys Space Sci 33:L19

    Google Scholar 

  • Vreeland RH, Rosenzweig WD, Powers D (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897

    Article  PubMed  CAS  Google Scholar 

  • Wachtershauser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci USA 87(1):200

    Article  PubMed  CAS  Google Scholar 

  • Waelkens C, Waters LBFM (1997). In: Pendleton YJ, Tielens AGGM (eds) From stardust to planete­simals. ASP conference series, vol 122. Astronomical Society of the Pacific, San Francisco, p 67

    Google Scholar 

  • Wainwright M, Wickramasinghe NC, Narlikar JV, Rajaratnam P (2003) Are these stratospheric nanoparticles bacteria? FEMS Microbiol Lett 218:161

    Article  PubMed  CAS  Google Scholar 

  • Wickramasinghe NC (1967) Interstellar grains. Chapman & Hall, London

    Google Scholar 

  • Wickramasinghe NC (1993) Cosmic Grains 2. Spectroscopic identifications and the organic model, infrared astronomy. In: Mampaso A, Prieto M, Sanchez F (eds) infrared astronomy. Cambridge University Press, Cambridge, p 303

    Google Scholar 

  • Wickramasinghe NC (2010) The astrobiological case for our cosmic ancestry. Int J Astrobiol 9(2):119–129

    Article  Google Scholar 

  • Wickramasinghe JT, Napier WM (2008) Impact cratering and the Oort cloud. MNRAS 387(1):153–157

    Article  Google Scholar 

  • Wickramasinghe NC, Wickramasinghe JT (2008) On the possibility of microbiota transfer from venus to earth. Astrophys Space Sci 317:133

    Article  Google Scholar 

  • Wickramasinghe NC, Hoyle F, Al-Jubory T (1989) Aromatic hydrocarbons in very small interstellar grains. Astrophys Space Sci 158:135

    Article  CAS  Google Scholar 

  • Wickramasinghe NC, Hoyle F, Al-Jubory T (1990) An integrated 2.5–12.5 μm emission spectrum of naturally-occurring aromatic molecules. Astrophys Space Sci 166:333

    Article  CAS  Google Scholar 

  • Wickramasinghe NC, Lloyd D, Wickramasinghe JT (2002) Evidence of photoluminescence of biomaterial in space. Proc SPIE 4495:255

    Article  CAS  Google Scholar 

  • Wickramasinghe JT, Wickramasinghe NC, Wallis MK (2009) Liquid water and organics in comets: implications for exobiology. Int J Astrobiol 8(4):281–290

    Article  CAS  Google Scholar 

  • Wickramasinghe JT, Wickramasinghe NC, Napier WM (2010) Comets and the origin of life. World Scientific Publ, Singapore

    Google Scholar 

  • Woese C, Fox G (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74(11):5088

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Wickramasinghe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wickramasinghe, C. (2012). Origin of Life and Panspermia. In: Seckbach, J. (eds) Genesis - In The Beginning. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2941-4_31

Download citation

Publish with us

Policies and ethics