Skip to main content

Conjugation in Bacillus thuringiensis: Insights into the Plasmids Exchange Process

  • Chapter
  • First Online:
Bacillus thuringiensis Biotechnology

Abstract

Since the discovery of the conjugation process in bacteria, many studies focusing on this issue have contributed to a better understanding of the biology, ecology, genetics and consequently to the taxonomy of bacteria. In this chapter, the mechanisms of the conjugation process in Gram-positive species were revised and detailed, including a set of events as the contact between donor and recipient cells, the DNA processing and its inter cellular transport, and the variations of the conjugal mating systems. Studies focusing on conjugative transfer in Bacillus thuringiensis, involving the detection of cry genes in large conjugative plasmids, the genetic basis of the process, the main plasmids, and methodological variations of mating systems are discussed. Nowadays conjugal mating systems are again prominence and several studies have been conducted to evaluate plasmid exchange both within and between B. thuringiensis and closely related species belonging to the Bacillus cereus group. Thus, conjugal mating systems became an important tool to understand the role of plasmids in the behavior and in genome evolution of B. thuringiensis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aly C, Mulla MS, Federici BA (1985) Sporulation and toxin production by Bacillus thuringiensis var. israelensis in cadavers of mosquito larvae. J Invertebr Pathol 46:251–258

    Article  CAS  Google Scholar 

  • Amadio AF, Benintende GB, Zandomeni RO (2009) Complete sequence of three plasmids from Bacillus thuringiensis INTA-FR7-4 environmental isolate and comparison with related plasmids from the Bacillus cereus group. Plasmid 62:172–182

    Article  CAS  Google Scholar 

  • Andrup L (1998) Conjugation in Gram-positive bacteria and kinetics of plasmid transfer. APMIS Suppl 84:47–55

    Article  CAS  Google Scholar 

  • Andrup L, Damgaard J, Wassermann K (1993) Mobilization of small plasmids in Bacillus thuringiensis subsp. israelensis is accompanied by specific aggregation. J Bacteriol 175:6530–6536

    CAS  Google Scholar 

  • Andrup L, Jorgensen O, Wilcks A, Smidt L, Jensen GB (1996) Mobilization of “non-mobilizable” plasmids by the aggregation-mediated conjugation system of Bacillus thuringiensis. Plasmid 36:75–85

    Article  CAS  Google Scholar 

  • Ankenbauer RG (1997) Reassessing forty years of genetic doctrine: retrotransfer and conjugation. Genetics 145:543–549

    CAS  Google Scholar 

  • Bahl MI, Hansen LH, Sørensen SJ (2009) Persistence mechanisms of conjugative plasmids. Methods Mol Biol 532:73–102

    Article  CAS  Google Scholar 

  • Battisti L, Green B, Thorne C (1985) Mating system for transfer of plasmids among Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. J Bacteriol 162:543–550

    CAS  Google Scholar 

  • Bavykin SG, Lysov YP, Zakhariev V, Kelly JJ, Jackman J, Stahl DA, Cherni A (2004) Use of 16S rRNA, 23S rRNA, and gyrB gene sequence analysis to determine phylogenetic relationships of Bacillus cereus group micro-organisms. J Clin Microbiol 42:3711–3730

    Article  CAS  Google Scholar 

  • Beijersbergen A, Den Dulk-Ras A, Schilperoort RA, Hooykaas PJJ (1992) Conjugative transfer by the virulence system of Agrobacterium tumefaciens. Science 256:1324–1327

    Article  CAS  Google Scholar 

  • Ben-Dov E, Nissan G, Pelleg N, Manasherob R, Boussiba S, Zaritsky A (1999) Refined, circular restriction map of the Bacillus thuringiensis subsp. israelensis plasmid carrying the mosquito larvicidal genes. Plasmid 42:186–191

    Article  CAS  Google Scholar 

  • Berry C, O’Neil S, Ben-Dov E, Jones AF, Murphy L, Quail MA, Holden MTG, Harris D, Zaritsky A, Parkhill J (2002) Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 68:5082–5095

    Article  CAS  Google Scholar 

  • Bertolla F, Simonet P (1999) Horizontal gene transfers in the environment: natural transformation as a putative process for gene transfers between transgenic plants and microorganisms. Res Microbiol 150:375–384

    Article  CAS  Google Scholar 

  • Bizzarri MF, Bishop AH (2008) The ecology of Bacillus thuringiensis on the Phylloplane: colonization from soil, plasmid transfer, and interaction with larvae of Pieris brassicae. Microb Ecol 56:133–139

    Article  CAS  Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LM, Yang W, Mayer JE, Roa-Rodriguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633

    Article  CAS  Google Scholar 

  • Chang YH, Shangkuan YH, Lin HC, Liu HW (2003) PCR assay of the groEL gene for detection and differentiation of Bacillus cereus group cells. Appl Environ Microbiol 69:4502–4510

    Article  CAS  Google Scholar 

  • Chen L, Chen Y, Wood DW, Nester EW (2002) A new type IV secretion system promotes conjugal transfer in Agrobacterium tumefaciens. J Bacteriol 184:4838–4845

    Article  CAS  Google Scholar 

  • Chen I, Christie PJ, Dubnau D (2005) The Ins and Outs of DNA transfer in bacteria. Science 310:1456–1460

    Article  CAS  Google Scholar 

  • Cherif A, Brusetti L, Borin S, Rizzi A, Boudabous A, Khyami-Horani H, Daffonchio D (2003) Genetic relationship in the ‘Bacillus cereus group’ by rep-PCR fingerprinting and sequencing of a Bacillus anthracis-specific rep-PCR fragment. J Appl Microbiol 94:1108–1119

    Article  CAS  Google Scholar 

  • Christie PJ (2004) Type IV secretion: the Agrobacterium virB/D4 and related conjugation systems. Biochim Biophys Acta 1694:219–234

    Article  CAS  Google Scholar 

  • Christie PJ, Vogel JP (2000) Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 8:354–360

    Article  CAS  Google Scholar 

  • Chumakov MI (2000) Transfer of genetic information from agrobacteria to bacterial and plant cells: membrane and supramembrane structures involved in transfer. Membr Cell Biol 14:309–331

    CAS  Google Scholar 

  • Clark AJ, Adelberg EA (1962) Bacterial conjugation. Annu Rev Microbiol 16:289–319

    Article  CAS  Google Scholar 

  • Curtiss R III (1969) Bacterial conjugation. Annu Rev Microbiol 23:69–136

    Article  CAS  Google Scholar 

  • Daffonchio D, Cherif A, Borin S (2000) Homoduplex and heteroduplex polymorphisms of the amplified ribosomal 16S--23S internal transcribed spacers describe genetic relationships in the “Bacillus cereus group”. Appl Environ Microbiol 66:5460–5468

    Article  CAS  Google Scholar 

  • Davison J (1999) Genetic exchange between bacteria in the environment. Mol Microbiol 42:73–91

    CAS  Google Scholar 

  • Ferreira LHPL, Suzuki MT, Itano EM, Ono MA, Arantes OMN (2003) Ecological aspects of Bacillus thuringiensis in an oxisoil. Sci Agric Sin 60:19–20

    Article  Google Scholar 

  • Frost LS, Koraimann G (2010) Regulation of bacterial conjugation: balancing opportunity with adversity. Future Microbiol 5:1057–1071

    Article  CAS  Google Scholar 

  • Furlaneto L, Saridakis HO, Arantes OM (2000) Survival and conjugal transfer between Bacillus thuringiensis strains in aquatic environment. Braz J Microbiol 31:233–238

    Article  CAS  Google Scholar 

  • Garcillán-Barcia MP, Francia MV, De La Cruz F (2009) The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 33:657–687

    Article  CAS  Google Scholar 

  • González JM Jr, Carlton BC (1980) Patterns of plasmid DNA in crystalliferous and acrystalliferous strains of Bacillus thuringiensis. Plasmid 3:92–98

    Article  Google Scholar 

  • González JM, Carlton BC (1982) Plasmid transfer in Bacillus thuringiensis. In: Streips UN, Goodgal SH, Guild WR, Wilson GA (eds) Genetic exchange: a celebration and a new generation. Marcel Dekker, NY, pp 85–95

    Google Scholar 

  • González JM Jr, Carlton BC (1984) A large transmissible plasmid is required for crystal toxin production in Bacillus thuringiensis variety israelensis. Plasmid 11:28–38

    Article  Google Scholar 

  • González JM Jr, Dulmage HT, Carlton BC (1981) Correlation between specific plasmids and delta-endotoxin production in Bacillus thuringiensis. Plasmid 5:352–365

    Article  Google Scholar 

  • González JM, Brown BJ, Carlton BC (1982) Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc Natl Acad Sci 79:6951–6955

    Article  Google Scholar 

  • Grohmann E, Muth G, Espinosa M (2003) Conjugative plasmid transfer in Gram-positive bacteria. Microbiol Mol Biol Rev 67:277–301

    Article  CAS  Google Scholar 

  • Guidi V, Patocchi N, Lüthy P, Tonolla M (2011) Distribution of Bacillus thuringiensis subsp. israelensis in soil of a Swiss Wetland reserve after 22 yrs of mosquito control. Appl Environ Microbiol 77:3663–3668

    Article  CAS  Google Scholar 

  • Han CS, Xie G, Challacombe JF, Altherr MR, Bhotika SS, Brown N, Bruce D, Campbell CS, Campbell ML, Chen J, Chertkov O, Cleland C, Dimitrijevic M, Doggett NA, Fawcett JJ, Glavina T, Goodwin LA, Green LD, Hill KK, Hitchcock P, Jackson PJ, Keim P, Kewalramani AR, Longmire J, Lucas S, Malfatti S, McMurry K, Meincke LJ, Misra M, Moseman BL, Mundt M, Munk AC, Okinaka RT, Parson-Quintana B, Reilly LP, Richardson P, Robinson DL, Rubin E, Saunders E, Tapia R, Tesmer JG, Thayer N, Thompson LS, Tice H, Ticknor LO, Wills PL, Brettin TS, Gilna P (2006) Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. J Bacteriol 188:3382–3390

    Article  Google Scholar 

  • Harrell LJ, Andersen GL, Wilson KH (1995) Genetic variability of Bacillus anthracis and related species. J Clin Microbiol 33:1847–1850

    CAS  Google Scholar 

  • Hayman GT, Bolen PL (1993) Movement of shuttle plasmids from Escherichia coli into yeasts other than Saccharomyces cerevisiae using trans-kingdom conjugation. Plasmid 30:251–257

    Article  CAS  Google Scholar 

  • Heinemann JA (1999) Genetic evidence of protein transfer during bacterial conjugation. Plasmid 41:240–247

    Article  CAS  Google Scholar 

  • Heinemann JA, Ankenbauer RG (1993) Retrotransfer in Escherichia coli conjugation: bidirectional exchange or de novo mating? J Bacteriol 175:583–588

    CAS  Google Scholar 

  • Heinemann JA, Scott HE, Williams M (1996) Doing the conjugative two-step: evidence of recipient autonomy in retrotransfer. Genetics 143:1425–1435

    CAS  Google Scholar 

  • Helgason E, Caugant DA, Lecadet MM, Chen Y, Mahillon J, Lövgren A, Hegna I, Kvaløy K, Kolstø AB (1998) Genetic diversity of Bacillus cereus/B. thuringiensis isolates from natural sources. Curr Microbiol 37:80–87

    Article  CAS  Google Scholar 

  • Helgason E, Caugant DA, Olsen I, Kolstø A-B (2000a) Genetic structure of population of Bacillus cereus and Bacillus thuringiensis isolates associated with periodontitis and other human infections. J Clin Microbiol 38:1615–1622

    CAS  Google Scholar 

  • Helgason E, Økstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolstø A-B (2000b). Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630

    Article  CAS  Google Scholar 

  • Helgason E, Tourasse NJ, Meisal R, Caugant DA, Kolstø A-B (2004) Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Appl Environ Microbiol 70:191–201

    Article  CAS  Google Scholar 

  • Hu X, Hansen BM, Eilenberg J, Hendriksen NB, Smidt L, Yuan Z, Jensen GB (2004) Conjugative transfer, stability and expression of a plasmid encoding a cry1Ac gene in Bacillus cereus group strains. FEMS Microbiol Lett 231:45–52

    Article  CAS  Google Scholar 

  • Hu X, Hansen BM, Yuan Z, Johansen JE, Eilenberg J, Hendriksen NB, Smidt L, Jensen GB (2005) Transfer and expression of the mosquitocidal plasmid pBtoxis in Bacillus cereus group strains. FEMS Microbiol Lett 245:239–247

    Article  CAS  Google Scholar 

  • Jarrett P, Stephenson M (1990) Plasmid transfer between strains of Bacillus thuringiensis infecting Galleria mellonella and Spodoptera littoralis. Appl Environ Microbiol 56:1608–1614

    CAS  Google Scholar 

  • Jensen GB, Wilcks A, Petersen SS, Damgaard J, Baum JA, Andrup L (1995) The genetic basis of the aggregation system in Bacillus thuringiensis subsp. israelensis is located on the large conjugative plasmid pXO16. J Bacteriol 177:2914–2917

    CAS  Google Scholar 

  • Jensen GB, Andrup L, Wilcks A, Smidt L, Poulsen OM (1996) The aggregation-mediated conjugation system of Bacillus thuringiensis subsp. israelensis: host range and kinetics. Curr Microbiol 33:228–236

    Article  CAS  Google Scholar 

  • Kashyap S, Amla DV (2007) Characterisation of Bacillus thuringiensis kurstaki strains by toxicity, plasmid profiles and numerical analysis of their cryIA genes. Afr J Biotechnol 6:1821–1827

    CAS  Google Scholar 

  • Kaspar RL, Robertson DL (1987) Purification and physical analysis of Bacillus anthracis plasmids pXO1 and pXO2. Biochem Biophys Res Commun 149:362–368

    Article  CAS  Google Scholar 

  • Keim P, Kalif A, Schupp J, Hill K, Travis SE, Richmond K, Adair DM, Hugh-Jones M, Kuske CR, Jackson P (1997) Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. J Bacteriol 179:818–824

    CAS  Google Scholar 

  • Ko KS, Kim J-W, Kim J-M, Kim W, Chung S, Kim IJ, Kook Y-H (2004) Population structure of the Bacillus cereus group as determined by sequence analysis of six housekeeping genes and the plcR gene. Infect Immun 72:5253–5261

    Article  CAS  Google Scholar 

  • Koehler TM, Thorne CB (1987) Bacillus subtilis (natto) plasmid pLS20 mediates interspecies plasmid transfer. J Bacteriol 169:5271–5278

    CAS  Google Scholar 

  • Kronstad JW, Schnepf HE, Whiteley HR (1983) Diversity of locations for Bacillus thuringiensis crystal protein genes. J Bacteriol 154:419–428

    CAS  Google Scholar 

  • Lederberg J (1986) Forty years of genetic recombination in bacteria. Nature 324:627–628

    Article  CAS  Google Scholar 

  • Lederberg J, Tatum EL (1946) Gene recombination in Escherichia coli. Nature 158:558

    Article  CAS  Google Scholar 

  • Lereclus D, Lecadet MM, Ribier J, Dedonder R (1982) Molecular relationships among plasmids of Bacillus thuringiensis: conserved sequences through 11 crystalliferous strains. Mol Gen Genet 186:391–398

    Article  CAS  Google Scholar 

  • Lereclus D, Menou G, Lecadet MM (1983) Isolation of a DNA sequence related to several plasmids from Bacillus thuringiensis after a mating involving the Streptococcus faecalis plasmid pAM beta 1. Mol Gen Genet 191:307–313

    Article  CAS  Google Scholar 

  • Lereclus D, Lecadet MM, Klier A, Ribier J, Rapoport G, Dedonder R (1985) Recent aspects of genetic manipulation in Bacillus thuringiensis. Biochimie 67:91–99

    Article  CAS  Google Scholar 

  • Lereclus D, Mahillon J, Menou G, Lecadet MM (1986) Identification of Tn4430, a transposon of Bacillus thuringiensis functional in Escherichia coli. Mol Gen Genet 204:52–57

    Article  CAS  Google Scholar 

  • Llosa M, Gomis-Ruth FX, Coll M, De La Cruz F (2002) Bacterial conjugation: a two-step mechanism for DNA transport. Mol Microbiol 45:1–8

    Article  CAS  Google Scholar 

  • Mahillon J, Rezsöhazy R, Hallet B, Delcour J (1994) IS231 and other Bacillus thuringiensis transposable elements: a review. Genetica 93:13–26

    Article  CAS  Google Scholar 

  • Mahmood A, Kimura T, Takenaka M, Yoshida K (1996) The construction of novel mobilizable YAC plasmids and their behavior during trans-kingdom conjugation between bacteria and yeasts. Genet Anal 13:25–31

    Article  CAS  Google Scholar 

  • Martin PAW, Travers RS (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol 55:2437–2442

    CAS  Google Scholar 

  • McDowell DG, Mann NH (1991) Characterization and sequence analysis of a small plasmid from Bacillus thuringiensis var. kurstaki strain HD1-DIPEL. Plasmid 25:113–120

    Article  CAS  Google Scholar 

  • Modrie P, Beuls E, Mahillon J (2010) Differential transfer dynamics of pAW63 plasmid among members of the Bacillus cereus group in food microcosms. J Appl Microbiol 108:888–897

    Article  CAS  Google Scholar 

  • Ohana B, Margalit J, Barak Z (1987) Fate of Bacillus thuringiensis subsp. israelensis under simulated field conditions. Appl Environ Microbiol 53:828–831

    CAS  Google Scholar 

  • Oultram JD, Young M (1985) Conjugal transfer of plasmic pAMb1 from Streptococcus lactis and Bacillus subtilis to Clostridium acetobutylicum. FEMS Microbiol Lett 27:129–134

    CAS  Google Scholar 

  • Pedersen JC, Damgaard PH, Eilenberg J, Hansen BM (1995) Dispersal of Bacillus thuringiensis var kurstaki in an experimental cabbage field. Can J Microbiol 41:118–125

    Article  CAS  Google Scholar 

  • Peruca APS, Vilas-Bôas GT, Arantes OMN (2008) Genetic relationships between sympatric populations of Bacillus cereus and Bacillus thuringiensis, as revealed by rep-PCR genomic fingerprinting. Mem Inst Oswaldo Cruz 103:497–500

    Article  CAS  Google Scholar 

  • Petras SF, Casida LE (1985) Survival of Bacillus thuringiensis spores in soil. Appl Environ Microbiol 50:1496–1501

    CAS  Google Scholar 

  • Priest FG, Barker M, Baillie LWJ, Holmes EC, Maiden MCJ (2004) Population structure and evolution of the Bacillus cereus group. J Bacteriol 186:7959–7970

    Article  CAS  Google Scholar 

  • Prozorov AA (2003) Conjugation in bacilli. Microbiology 72:517–552

    Article  CAS  Google Scholar 

  • Pruett CJH, Burges HD, Wybom CH (1980) Effect of exposure to soil on potency and spores viability of Bacillus thuringiensis. J Invertebr Pathol 35:168–174

    Article  Google Scholar 

  • Radnedge L, Agron PG, Hill KK, Jackson PJ, Ticknor LO, Keim P, Andersen GL (2003) Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol 69:2755–2764

    Article  CAS  Google Scholar 

  • Rasko DA, Rosovitz MJ, Økstad OA, Fouts DE, Jiang L, Cer RZ, Kolstø AB, Gill SR, Ravel J (2007) Complete sequence analysis of novel plasmids from emetic and periodontal Bacillus cereus isolates reveals a common evolutionary history among the B. cereus-group plasmids, including Bacillus anthracis pXO1. J Bacteriol 189:52–64

    Article  CAS  Google Scholar 

  • Raymond B, Johnston P, Nielsen-LeRoux C, Lereclus D, Crickmore N (2010a) Bacillus thuringiensis: an impotent pathogen? Trends Microbiol 18:189–194

    Article  CAS  Google Scholar 

  • Raymond B, Wyres KL, Sheppard SK, Ellis RJ, Bonsall MB (2010b) Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus group in the field. PLoS Pathog 6:e1000905

    Article  CAS  Google Scholar 

  • Reddy A, Battisti L, Thorne C (1987) Identification of self-transmissible plasmids in four Bacillus thuringiensis subspecies. J Bacteriol 169:5263–5270

    CAS  Google Scholar 

  • Saleh SM, Harris RF, Allen ON (1970) Fate of Bacillus thuringiensis in soil: effect of soil pH and organic amendment. Can J Microbiol 16:667–680

    Article  Google Scholar 

  • Santos CA, Vilas-Bôas GT, Lereclus D, Suzuki MT, Angelo EA, Arantes OMN (2010) Conjugal transfer between Bacillus thuringiensis and Bacillus cereus strains is not directly correlated with growth of recipient strains. J Invertebr Pathol 105:171–175

    Article  Google Scholar 

  • Sia EA, Kuehner DM, Figurski DH (1996) Mechanism of retrotransfer in conjugation: prior transfer of the conjugative plasmid is required. J Bacteriol 178:1457–1464

    CAS  Google Scholar 

  • Suzuki M, Lereclus D, Arantes OMN (2004) Fate of Bacillus thuringiensis in different insect larvae. Can J Microbiol 50:973–975

    Article  CAS  Google Scholar 

  • Takatsuka J, Kunimi Y (2000) Intestinal bacteria affect growth of Bacillus thuringiensis in larvae of the oriental tea tortrix, Homona magnanima Diakonoff (Lepidoptera: Tortricidae). J Invertebr Pathol 76:222–226

    Article  CAS  Google Scholar 

  • Thomas DJI, Morgan JAW, Whipps JM, Saunders JR (2000) Plasmid transfer betweem the Bacillus thuringiensis subspecies kurstaki and tenebrionis in laboratory culture and soil and in Lepidopteran and Coleopteran larvae. Appl Environ Microbiol 66:118–124

    Article  CAS  Google Scholar 

  • Thomas DJI, Morgan JAW, Whipps JM, Saunders JR (2001) Plasmid transfer between the Bacillus thuringiensis subspecies. israelensis strains in laboratory culture, river water, and dipteran larvae. Appl Environ Microbiol 67:330–338

    Article  CAS  Google Scholar 

  • Thomas DJI, Morgan JAW, Whipps JM, Saunders JR (2002) Transfer of plasmid pBC16 between Bacillus thuringiensis strains in non-susceptible larval. FEMS Microbiol Ecol 40:181–190

    Article  CAS  Google Scholar 

  • Timmery S, Modrie P, Minet O, Mahillon J (2009) Plasmid capture by the Bacillus thuringiensis conjugative plasmid pXO16. J Bacteriol 191:2197–2205

    Article  CAS  Google Scholar 

  • Top E, Vanrolleghem P, Mergeay M, Verstraete W (1992) Determination of the mechanism of retrotransfer by mechanistic mathematical modelling. J Bacteriol 174:5953–5960

    CAS  Google Scholar 

  • Van der Auwera GA, Timmery S, Hoton F, Mahillon J (2007) Plasmid exchanges among members of the Bacillus cereus group in foodstuffs. Int J Food Microbiol 113:164–172

    Article  CAS  Google Scholar 

  • Van Elsas JD, Govaertj M, Van Veen JA (1987) Transfer of plasmid pFT30 between bacilli in soil as influenced by bacterial population dynamics and soil conditions. Soil Biol Biochem 19:639–647

    Article  Google Scholar 

  • Vilas-Bôas GFLT, Vilas-Bôas LA, Lereclus D, Arantes OMN (1998) Bacillus thuringiensis conjugation under environmental conditions. FEMS Microbiol Ecol 25:369–374

    Article  Google Scholar 

  • Vilas-Bôas LA, Vilas-Bôas GFLT, Saridakis HO, Lemos MVF, Lereclus D, Arantes OMN (2000) Survival and conjugation of Bacillus thuringiensis in a soil microcosm. FEMS Microbiol Ecol 31:255–259

    Article  Google Scholar 

  • Vilas-Bôas G, Sanchis V, Lereclus D, Lemos MV, Bourguet D (2002) Genetic differentiation between sympatric populations of Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol 68:1414–1424

    Article  CAS  Google Scholar 

  • Vilas-Bôas GT, Peruca APS, Arantes OMN (2007) Biology and taxonomy of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis. Can J Microbiol 53:673–687

    Article  CAS  Google Scholar 

  • Waters VL, Guiney DG (1993) Processes at the nick region link conjugation, T-DNA transfer and rolling circle replication. Mol Microbiol 9:1123–1130

    Article  CAS  Google Scholar 

  • Wilcks A, Jayaswal N, Lereclus D, Andrup L (1998) Characterization of plasmid pAW63, a second self-transmissible plasmid in Bacillus thuringiensis subsp. kurstaki HD73. Microbiology 144:1263–1270

    Article  CAS  Google Scholar 

  • Wilcks A, Smidt L, Bahl MI, Hansen BM, Andrup L, Hendriksen NB, Licht TR (2008) Germination and conjugation of Bacillus thuringiensis subsp. israelensis in the intestine of gnotobiotic rats. J Appl Microbiol 104:1252–1259

    Article  CAS  Google Scholar 

  • Wozniak RA, Waldor MK (2010) Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8:522–563

    Article  CAS  Google Scholar 

  • Yuan YM, Hu XM, Liu HZ, Hansen BM, Yan JP, Yuan ZM (2007) Kinetics of plasmid transfer among Bacillus cereus group strains within lepidopteran larvae. Arch Microbiol 187:425–431

    Article  CAS  Google Scholar 

  • Zhong C, Peng D, Ye W, Chai L, Qi J, Yu Z, Ruan L, Sun M (2011) Determination of plasmid copy number reveals the total plasmid DNA amount is greater than the chromosomal DNA amount in Bacillus thuringiensis YBT-1520. PLoS One 6(1):e16025

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gislayne T. Vilas-Bôas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vilas-Bôas, G.T., Santos, C.A. (2012). Conjugation in Bacillus thuringiensis: Insights into the Plasmids Exchange Process. In: Sansinenea, E. (eds) Bacillus thuringiensis Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3021-2_8

Download citation

Publish with us

Policies and ethics