Skip to main content

Reconstructing Models from Proteomics Data

  • Chapter
  • First Online:
Computational Systems Neurobiology

Abstract

The synaptic proteome is a highly complex and dynamic structure composed of more roughly 2,000 distinct proteins. The constant improvement of synaptic fraction preparation, protein complex isolation and mass spectrometry identification methods has led to a great accumulation of synaptic proteomics data. In order to gain a better insight of how the synaptic proteome is organised in molecular complexes identified from the biochemical analysis of neural tissues we have developed and combined a series of methods for reconstructing and analysing protein interaction network models from synaptic proteomics data. These methods cover every aspect of the reconstruction, ranging from how to annotate the proteins and acquire the protein interaction data to how to interpret and analyse the resulting models. This chapter gives a detailed overview of these methods as well as example applications to case study proteomics datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert R, Jeong H, Barabási A (2000) Error and attack tolerance of complex networks. Nature 406(6794):378–382

    PubMed  CAS  Google Scholar 

  • Alex B, Haddow B, Grover C (2007) Recognising nested named entities in biomedical text. In: Proceedings of the workshop on BioNLP 2007: biological, translational, and clinical language processing, Prague, pp 65–72

    Google Scholar 

  • Alex B, Grover C, Haddow B, Kabadjov M, Klein E, Matthews M, Tobin R, Wang X (2008) Automating curation using a natural language processing pipeline. Genome Biol 9(Suppl 2):S10

    PubMed  Google Scholar 

  • Allen NC, Bagade S, McQueen MB, Ioannidis JPA, Kavvoura FK, Khoury MJ, Tanzi RE, Bertram L (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the szgene database. Nat Genet 40(7):827–834

    PubMed  CAS  Google Scholar 

  • Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6):450–461

    PubMed  CAS  Google Scholar 

  • Al-Shahrour F, Díaz-Uriarte R, Dopazo J (2004) Fatigo: a web tool for finding significant associations of gene ontology terms with groups of genes. Bioinformatics 20(4):578–580

    PubMed  CAS  Google Scholar 

  • Altaf-Ul-Amin M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S (2006) Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC bioinformatics 7(1):207

    PubMed  Google Scholar 

  • Antonov A, Schmidt T, Wang Y, Mewes H (2008) Profcom: a web tool for profiling the complex functionality of gene groups identified from high-throughput data. Nucleic Acids Res 36(suppl 2):W347

    PubMed  CAS  Google Scholar 

  • Arnau V, Mars S, Marín I (2005) Iterative cluster analysis of protein interaction data. Bioinformatics 21(3):364

    PubMed  CAS  Google Scholar 

  • Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J, Davis A, Dolinski K, Dwight S, Eppig J (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25

    Google Scholar 

  • Asur S, Ucar D, Parthasarathy S (2007) An ensemble framework for clustering protein–protein interaction networks. Bioinformatics 23(13):i29

    PubMed  CAS  Google Scholar 

  • Bader G, Hogue C (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4(1):2

    PubMed  Google Scholar 

  • Bai F, Witzmann F (2007) Synaptosome proteomics. In: Bertrand E, Faupel MD (eds) Subcellular proteomics. Springer, Dordrecht, pp 77–98

    Google Scholar 

  • Barabási A, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509

    PubMed  Google Scholar 

  • Barabási A, Dezso Z, Ravasz E, Yook S, Oltvai Z (2003) Scale-free and hierarchical structures in complex networks. AIP Conf Proc 661:1

    Google Scholar 

  • Barnard G (1945) A new test for 2  × 2 tables. Nature 156:177

    Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Edgar R (2009) Ncbi geo: archive for high-throughput functional genomic data. Nucleic Acids Res 37(Database issue):D885–D890

    Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A (2011) Ncbi geo: archive for functional genomics data sets—10 years on. Nucleic Acids Res 39(Database issue):D1005–D1010

    Google Scholar 

  • Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL (2005) High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307(5715):1621–1625

    PubMed  CAS  Google Scholar 

  • Bayés A, Grant S (2009) Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat Rev Neurosci 10(9):635–646

    PubMed  Google Scholar 

  • Bayés A, van de Lagemaat L, Collins M, Croning M, Whittle I, Choudhary J, Grant S (2010) Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat Neurosci 14(1):19–21

    PubMed  Google Scholar 

  • Bécamel C, Alonso G, Galéotti N, Demey E, Jouin P, Ullmer C, Dumuis A, Bockaert J, Marin P (2002) Synaptic multiprotein complexes associated with 5-ht(2c) receptors: a proteomic approach. EMBO J 21(10):2332–2342

    PubMed  Google Scholar 

  • Bellman R (1958) On a routing problem. Q Appl Math 16(1):87–90

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 57(1):289–300

    Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29(4):1165–1188

    Google Scholar 

  • Berglund AC, Sjölund E, Ostlund G, Sonnhammer ELL (2008) Inparanoid 6: eukaryotic ortholog clusters with inparalogs. Nucleic Acids Res 36(Database issue):D263–D266

    Google Scholar 

  • Berkel S, Marshall CR, Weiss B, Howe J, Roeth R, Moog U, Endris V, Roberts W, Szatmari P, Pinto D, Bonin M, Riess A, Engels H, Sprengel R, Scherer SW, Rappold GA (2010) Mutations in the shank2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat Genet 42(6):489–491

    PubMed  CAS  Google Scholar 

  • Berriz GF, King OD, Bryant B, Sander C, Roth FP (2003) Characterizing gene sets with funcassociate. Bioinformatics 19(18):2502–2504

    PubMed  CAS  Google Scholar 

  • Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta-analyses of alzheimer disease genetic association studies: the alzgene database. Nat Genet 39(1):17–23

    PubMed  CAS  Google Scholar 

  • Blake JA, Richardson JE, Bult CJ, Kadin JA, Eppig JT, Group MGD (2002) The mouse genome database (mgd): the model organism database for the laboratory mouse. Nucleic Acids Res 30(1):113–115

    Google Scholar 

  • Bouwmeester T, Bauch A, Ruffner H, Angrand P, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S (2004) A physical and functional map of the human tnf-a/nf-kb signal transduction pathway. Nat Cell Biol 6(2):97–105

    PubMed  CAS  Google Scholar 

  • Brandes U, Delling D, Gaertler M, Goerke R, Hoefer M, Nikoloski Z, Wagner D (2006) Maximizing modularity is hard. arXiv physics.data-an

    Google Scholar 

  • Bu D, Zhao Y, Cai L, Xue H, Zhu X, Lu H, Zhang J, Sun S, Ling L, Zhang N (2003) Topological structure analysis of the protein–protein interaction network in budding yeast. Nucleic Acids Res 31(9):2443

    PubMed  CAS  Google Scholar 

  • Bult CJ, Eppig JT, Kadin JA, Richardson JE, Blake JA, Group MGD (2008) The mouse genome database (mgd): mouse biology and model systems. Nucleic Acids Res 36(Database issue):D724–D728

    Google Scholar 

  • Burré J, Beckhaus T, Schägger H, Corvey C, Hofmann S, Karas M, Zimmermann H, Volknandt W (2006) Analysis of the synaptic vesicle proteome using three gel-based protein separation techniques. Proteomics 6(23):6250–6262

    PubMed  Google Scholar 

  • Carlin RK, Grab DJ, Cohen RS, Siekevitz P (1980) Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. J Cell Biol 86(3):831–845

    PubMed  CAS  Google Scholar 

  • Ceol A, Aryamontri AC, Licata L, Peluso D, Briganti L, Perfetto L, Castagnoli L, Cesareni G (2010) Mint, the molecular interaction database: 2009 update. Nucleic Acids Res 38(Database issue):D532–D539

    Google Scholar 

  • Cesareni G, Chatr-aryamontri A, Licata L, Ceol A (2008) Searching the mint database for protein interaction information. Curr Protoc Bioinform Chapter 8:Unit 8.5

    Google Scholar 

  • Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G (2007) Mint: the molecular interaction database. Nucleic Acids Res 35(Database issue):D572–D574

    Google Scholar 

  • Chatr-aryamontri A, Zanzoni A, Ceol A, Cesareni G (2008) Searching the protein interaction space through the mint database. Methods Mol Biol 484:305–317

    PubMed  CAS  Google Scholar 

  • Cho YR, Hwang W, Zhang A (2006) Efficient modularization of weighted protein interaction networks using k-hop graph reduction. BioInformatics and bioEngineering, 2006 BIBE 2006 sixth IEEE symposium on, Arlington, pp 289–298

    Google Scholar 

  • Choudhary J, Grant SGN (2004) Proteomics in postgenomic neuroscience: the end of the beginning. Nat Neurosci 7(5):440–445

    PubMed  CAS  Google Scholar 

  • Clauset A, Newman M, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):066111

    Google Scholar 

  • Clauset A, Shalizi C, Newman M (2007) Power-law distributions in empirical data. Arxiv preprint arXiv:07061062

    Google Scholar 

  • Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono K, Pavlovic V, Pico AR, Vailaya A, Wang PL, Adler A, Conklin BR, Hood L, Kuiper M, Sander C, Schmulevich I, Schwikowski B, Warner GJ, Ideker T, Bader GD (2007) Integration of biological networks and gene expression data using cytoscape. Nat protoc 2(10):2366–2382

    PubMed  CAS  Google Scholar 

  • Coba MP, Valor LM, Kopanitsa MV, Afinowi NO, Grant SGN (2008) Kinase networks integrate profiles of n-methyl-d-aspartate receptor-mediated gene expression in hippocampus. J Biol Chem 283(49):34101–34107

    PubMed  CAS  Google Scholar 

  • Coba MP, Pocklington AJ, Collins MO, Kopanitsa MV, Uren RT, Swamy S, Croning MDR, Choudhary JS, Grant SGN (2009) Neurotransmitters drive combinatorial multistate postsynaptic density networks. Sci Signal 2(68):ra19

    Google Scholar 

  • Collins MO, Husi H, Yu L, Brandon JM, Anderson CNG, Blackstock WP, Choudhary JS, Grant SGN (2006) Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J Neurochem 97(Suppl 1):16–23

    PubMed  CAS  Google Scholar 

  • Conant GC, Wagner A (2003) Convergent evolution of gene circuits. Nat Genet 34(3):264–266

    PubMed  CAS  Google Scholar 

  • Coyle JT (2006) Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 26(4–6):365–384

    PubMed  CAS  Google Scholar 

  • Craig AM, Kang Y (2007) Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol 17(1):43–52

    PubMed  CAS  Google Scholar 

  • Croning MDR, Marshall MC, McLaren P, Armstrong JD, Grant SGN (2009) G2cdb: the genes to cognition database. Nucleic Acids Res 37(Database issue):D846–D851

    Google Scholar 

  • Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) David: database for annotation, visualization, and integrated discovery. Genome Biol 4(5):P3

    PubMed  Google Scholar 

  • Dijkstra E (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271

    Google Scholar 

  • Dittrich M, Klau G, Rosenwald A, Dandekar T, Muller T (2008) Identifying functional modules in protein–protein interaction networks: an integrated exact approach. Bioinformatics 24(13):i223–i231

    PubMed  CAS  Google Scholar 

  • Doniger SW, Salomonis N, Dahlquist KD, Vranizan K, Lawlor SC, Conklin BR (2003) Mappfinder: using gene ontology and genmapp to create a global gene-expression profile from microarray data. Genome Biol 4(1):R7

    PubMed  Google Scholar 

  • Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, Bupp S, Shrestha P, Shah RD, Doughty ML, Gong S, Greengard P, Heintz N (2008) Application of a translational profiling approach for the comparative analysis of cns cell types. Cell 135(4):749–762

    PubMed  CAS  Google Scholar 

  • Dunn R, Dudbridge F, Sanderson C (2005) The use of edge-betweenness clustering to investigate biological function in protein interaction networks. BMC Bioinformatics 6:39

    PubMed  Google Scholar 

  • Emes RD, Pocklington AJ, Anderson CNG, Bayes A, Collins MO, Vickers CA, Croning MDR, Malik BR, Choudhary JS, Armstrong JD, Grant SGN (2008) Evolutionary expansion and anatomical specialization of synapse proteome complexity. Nat Neurosci 11(7):799–806

    PubMed  CAS  Google Scholar 

  • Enright A, Ouzounis C (2001) Biolayout—an automatic graph layout algorithm for similarity visualization. Bioinformatics 17(9):853

    PubMed  CAS  Google Scholar 

  • Enright A, Dongen SV, Ouzounis C (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30(7):1575

    PubMed  CAS  Google Scholar 

  • Eppig JT, Bult CJ, Kadin JA, Richardson JE, Blake JA, Anagnostopoulos A, Baldarelli RM, Baya M, Beal JS, Bello SM, Boddy WJ, Bradt DW, Burkart DL, Butler NE, Campbell J, Cassell MA, Corbani LE, Cousins SL, Dahmen DJ, Dene H, Diehl AD, Drabkin HJ, Frazer KS, Frost P, Glass LH, Goldsmith CW, Grant PL, Lennon-Pierce M, Lewis J, Lu I, Maltais LJ, McAndrews-Hill M, McClellan L, Miers DB, Miller LA, Ni L, Ormsby JE, Qi D, Reddy TBK, Reed DJ, Richards-Smith B, Shaw DR, Sinclair R, Smith CL, Szauter P, Walker MB, Walton DO, Washburn LL, Witham IT, Zhu Y, Group MGD (2005) The mouse genome database (mgd): from genes to mice – a community resource for mouse biology. Nucleic Acids Res 33(Database issue):D471–D475

    Google Scholar 

  • Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE, Group MGD (2007) The mouse genome database (mgd): new features facilitating a model system. Nucleic Acids Res 35(Database issue):D630–D637

    Google Scholar 

  • Erdös P, Szckeres G (1987) A combinatorial problem in geometry. In: Gessel I, Rota G.-C (eds) Classic papers in combinatorics. Birkhaüser, Boston, pp 49–56

    Google Scholar 

  • Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O’Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D (2007) Large-scale mapping of human protein–protein interactions by mass spectrometry. Mol Syst Biol 3:89

    PubMed  Google Scholar 

  • Farr CD, Gafken PR, Norbeck AD, Doneanu CE, Stapels MD, Barofsky DF, Minami M, Saugstad JA (2004) Proteomic analysis of native metabotropic glutamate receptor 5 protein complexes reveals novel molecular constituents. J Neurochem 91(2):438–450

    PubMed  CAS  Google Scholar 

  • Fernández E, Collins M, Uren R, Kopanitsa M, Komiyama N, Croning M, Zografos L, Armstrong J, Choudhary J, Grant S (2009) Targeted tandem affinity purification of psd-95 recovers core postsynaptic complexes and schizophrenia susceptibility proteins. Mol Syst Biol 5(1):269

    PubMed  Google Scholar 

  • Finger JH, Smith CM, Hayamizu TF, McCright IJ, Eppig JT, Kadin JA, Richardson JE, Ringwald M (2011) The mouse gene expression database (gxd): 2011 update. Nucleic Acids Res 39(Database issue):D835–D841

    Google Scholar 

  • Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A (2010) The pfam protein families database. Nucleic Acids Res 38(Database issue):D211–D222

    Google Scholar 

  • Fisher R (1922) On the interpretation of chi squared from contingency tables, and the calculation of p. J R Stat Soc 85(1):87–94

    Google Scholar 

  • Frankland PW, O’Brien C, Ohno M, Kirkwood A, Silva AJ (2001) Alpha-camkii-dependent plasticity in the cortex is required for permanent memory. Nature 411(6835):309–313

    PubMed  CAS  Google Scholar 

  • Franks KM, Sejnowski TJ (2002) Complexity of calcium signaling in synaptic spines. Bioessays 24(12):1130–1144

    PubMed  CAS  Google Scholar 

  • Gavin A, Bösche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick J, Michon A, Cruciat C (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147

    PubMed  CAS  Google Scholar 

  • Gavin A, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen L, Bastuck S, Dümpelfeld B (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631–636

    PubMed  CAS  Google Scholar 

  • Gelbart W, Crosby M, Matthews B, Rindone W, Chillemi J, Twombly S, Emmert D, Ashburner M, Drysdale R, Whitfield E (1997) Flybase: a drosophila database. The flybase consortium. Nucleic Acids Res 25(1):63

    Google Scholar 

  • Gould CM, Diella F, Via A, Puntervoll P, Gemünd C, Chabanis-Davidson S, Michael S, Sayadi A, Bryne JC, Chica C, Seiler M, Davey NE, Haslam N, Weatheritt RJ, Budd A, Hughes T, Pas J, Rychlewski L, Travé G, Aasland R, Helmer-Citterich M, Linding R, Gibson TJ (2010) Elm: the status of the 2010 eukaryotic linear motif resource. Nucleic Acids Res 38(Database issue):D167–D180

    Google Scholar 

  • Grant S (2003) Synapse signalling complexes and networks: machines underlying cognition. Bioessays 25(12):1229–1235

    PubMed  CAS  Google Scholar 

  • Greene R (2001) Circuit analysis of nmdar hypofunction in the hippocampus, in vitro, and psychosis of schizophrenia. Hippocampus 11(5):569–577

    PubMed  CAS  Google Scholar 

  • Greene D, Cagney G, Krogan N, Cunningham P (2008) Ensemble non-negative matrix factorization methods for clustering protein–protein interactions. Bioinformatics 24(15):1722

    PubMed  CAS  Google Scholar 

  • Grønborg M, Pavlos NJ, Brunk I, Chua JJE, Münster-Wandowski A, Riedel D, Ahnert-Hilger G, Urlaub H, Jahn R (2010) Quantitative comparison of glutamatergic and gabaergic synaptic vesicles unveils selectivity for few proteins including mal2, a novel synaptic vesicle protein. J Neurosci 30(1):2–12

    PubMed  Google Scholar 

  • Groth P, Pavlova N, Kalev I, Tonov S, Georgiev G, Pohlenz HD, Weiss B (2007) Phenomicdb: a new cross-species genotype/phenotype resource. Nucleic Acids Res 35(Database issue): D696–D699

    Google Scholar 

  • Guimerà R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433(7028):895–900

    PubMed  Google Scholar 

  • Hahn CG, Banerjee A, Macdonald ML, Cho DS, Kamins J, Nie Z, Borgmann-Winter KE, Grosser T, Pizarro A, Ciccimaro E, Arnold SE, Wang HY, Blair IA, Fox D (2009) The post-synaptic density of human postmortem brain tissues: an experimental study paradigm for neuropsychiatric illnesses. PLoS ONE 4(4):e5251

    PubMed  Google Scholar 

  • Hall M, Frank E, Holmes G, Pfahringer B (2009) The weka data mining software: an update. ACM SIGKDD Explor 11:10–18

    Google Scholar 

  • Hamdan FF, Daoud H, Piton A, Gauthier J, Dobrzeniecka S, Krebs MO, Joober R, Lacaille JC, Nadeau A, Milunsky JM, Wang Z, Carmant L, Mottron L, Beauchamp MH, Rouleau GA, Michaud JL (2011) De novo syngap1 mutations in nonsyndromic intellectual disability and autism. Biol Psychiatry 69:898–901

    PubMed  CAS  Google Scholar 

  • Han JDJ, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJM, Cusick ME, Roth FP, Vidal M (2004) Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430(6995):88–93

    PubMed  CAS  Google Scholar 

  • Han JDJ, Dupuy D, Bertin N, Cusick ME, Vidal M (2005) Effect of sampling on topology predictions of protein–protein interaction networks. Nat Biotechnol 23(7):839–844

    PubMed  CAS  Google Scholar 

  • Hanisch D, Zien A, Zimmer R, Lengauer T (2002) Co-clustering of biological networks and gene expression data. Bioinformatics 18(Suppl 1):S145–S154

    PubMed  Google Scholar 

  • Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10(1):40–68; image 5

    Google Scholar 

  • Hart P, Nilsson N, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern SSC4 4(2):100–107

    Google Scholar 

  • Hartuv E, Shamir R (2000) A clustering algorithm based on graph connectivity. Inf Process Lett 76:175

    Google Scholar 

  • Heintz N (2004) Gene expression nervous system atlas (gensat). Nat Neurosci 7(5):483

    PubMed  CAS  Google Scholar 

  • Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, Margalit H, Armstrong J, Bairoch A, Cesareni G, Sherman D, Apweiler R (2004) Intact: an open source molecular interaction database. Nucleic Acids Res 32(Database issue):D452–D455

    Google Scholar 

  • Hinman VF, Davidson EH (2007) Evolutionary plasticity of developmental gene regulatory network architecture. Proc Natl Acad Sci USA 104(49):19404–19409

    PubMed  CAS  Google Scholar 

  • Hinman VF, Nguyen AT, Cameron RA, Davidson EH (2003) Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Proc Natl Acad Sci USA 100(23):13356–13361

    PubMed  CAS  Google Scholar 

  • Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sørensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CWV, Figeys D, Tyers M (2002) Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180–183

    PubMed  CAS  Google Scholar 

  • Hosack DA, Dennis G, Sherman BT, Lane HC, Lempicki RA (2003) Identifying biological themes within lists of genes with ease. Genome Biol 4(10):R70

    PubMed  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13

    Google Scholar 

  • Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJA, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C (2009) Interpro: the integrative protein signature database. Nucleic Acids Res 37(Database issue):D211–D215

    Google Scholar 

  • Husi H, Grant SG (2001) Isolation of 2000-kda complexes of n-methyl-d-aspartate receptor and postsynaptic density 95 from mouse brain. J Neurochem 77(1):281–291

    PubMed  CAS  Google Scholar 

  • Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG (2000) Proteomic analysis of nmda receptor-adhesion protein signaling complexes. Nat Neurosci 3(7):661–669

    PubMed  CAS  Google Scholar 

  • Hwang W, Cho Y, Zhang A, Ramanathan M (2006) A novel functional module detection algorithm for protein–protein interaction networks. Algorithms Mol Biol 1(1):24

    PubMed  Google Scholar 

  • Hwang W, Cho YR, Zhang A, Ramanathan M (2008) Cascade: a novel quasi all paths-based network analysis algorithm for clustering biological interactions. BMC Bioinformatics 9:64

    PubMed  Google Scholar 

  • Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl 1):S233–S240

    PubMed  Google Scholar 

  • Inlow JK, Restifo LL (2004) Molecular and comparative genetics of mental retardation. Genetics 166(2):835–881

    PubMed  CAS  Google Scholar 

  • Jamain S, Quach H, Betancur C, RÃ¥stam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C, Bourgeron T, Study PARIS (2003) Mutations of the x-linked genes encoding neuroligins nlgn3 and nlgn4 are associated with autism. Nat Genet 34(1):27–29

    Google Scholar 

  • Jansen R, Greenbaum D, Gerstein M (2002) Relating whole-genome expression data with protein–protein interactions. Genome Res 12(1):37

    PubMed  CAS  Google Scholar 

  • Jeong H, Mason S, Barabasi A, Oltvai Z (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42

    PubMed  CAS  Google Scholar 

  • Jiang T, Keating A (2005) Avid: an integrative framework for discovering functional relationships among proteins. BMC bioinformatics 6(1):136

    PubMed  Google Scholar 

  • Jones R (2011) Tuning into places. PLoS Biol 9:e1001042

    CAS  Google Scholar 

  • Jones AR, Overly CC, Sunkin SM (2009) The allen brain atlas: 5 years and beyond. Nat Rev Neurosci 10(11):821–828

    PubMed  CAS  Google Scholar 

  • Jordan BA, Fernholz BD, Boussac M, Xu C, Grigorean G, Ziff EB, Neubert TA (2004) Identification and verification of novel rodent postsynaptic density proteins. Mol Cell Proteomics 3(9):857–871

    PubMed  CAS  Google Scholar 

  • Jung S, Jang W, Hur H, Hyun B, Han D (2008) Protein complex prediction based on mutually exclusive interactions in protein interaction network. Genome Inform 21:77–88

    PubMed  CAS  Google Scholar 

  • Kahng G, Oh E, Kahng B, Kim D (2003) Betweenness centrality correlation in social networks. Phys Rev E

    Google Scholar 

  • Kahraman A, Avramov A, Nashev LG, Popov D, Ternes R, Pohlenz HD, Weiss B (2005) Phenomicdb: a multi-species genotype/phenotype database for comparative phenomics. Bioinformatics 21(3):418–420

    PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) Kegg for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38(Database issue):D355–D360

    Google Scholar 

  • Karayiorgou M, Simon TJ, Gogos JA (2010) 22q11.2 microdeletions: linking dna structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci 11(6):402–416

    Google Scholar 

  • Kashtan N, Itzkovitz S, Milo R, Alon U (2004) Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics (Oxford, England) 20(11):1746–1758

    Google Scholar 

  • Kim E, Sheng M (2004) Pdz domain proteins of synapses. Nat Rev Neurosci 5(10):771–781

    PubMed  CAS  Google Scholar 

  • Kim J, Jung SC, Clemens AM, Petralia RS, Hoffman DA (2007) Regulation of dendritic excitability by activity-dependent trafficking of the a-type k+ channel subunit kv4.2 in hippocampal neurons. Neuron 54(6):933–947

    Google Scholar 

  • Kim H, Kishikawa S, Higgins A, Seong I, Donovan D, Shen Y, Lally E, Weiss L, Najm J, Kutsche K (2008) Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet 82(1):199–207

    PubMed  CAS  Google Scholar 

  • Kirov G, Rujescu D, Ingason A, Collier DA, O’Donovan MC, Owen MJ (2009a) Neurexin 1 (nrxn1) deletions in schizophrenia. Schizophr Bull 35(5):851–854

    PubMed  Google Scholar 

  • Kirov G, Zaharieva I, Georgieva L, Moskvina V, Nikolov I, Cichon S, Hillmer A, Toncheva D, Owen MJ, O’Donovan MC (2009b) A genome-wide association study in 574 schizophrenia trios using dna pooling. Mol Psychiatry 14(8):796–803

    PubMed  CAS  Google Scholar 

  • Köhler J, Baumbach J, Taubert J, Specht M, Skusa A, Rüegg A, Rawlings C, Verrier P, Philippi S (2006) Graph-based analysis and visualization of experimental results with ondex. Bioinformatics 22(11):1383–1390

    PubMed  Google Scholar 

  • Komiyama NH, Watabe AM, Carlisle HJ, Porter K, Charlesworth P, Monti J, Strathdee DJC, O’Carroll CM, Martin SJ, Morris RGM, O’Dell TJ, Grant SGN (2002) Syngap regulates erk/mapk signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and nmda receptor. J Neurosci 22(22):9721–9732

    PubMed  CAS  Google Scholar 

  • Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrín-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, Onge PS, Ghanny S, Lam MHY, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast saccharomyces cerevisiae. Nature 440(7084):637–643

    PubMed  CAS  Google Scholar 

  • Lagomarsino MC, Jona P, Bassetti B, Isambert H (2007) Hierarchy and feedback in the evolution of the escherichia coli transcription network. Proc Natl Acad Sci USA 104(13):5516–5520

    CAS  Google Scholar 

  • Li KW, Jimenez CR (2008) Synapse proteomics: current status and quantitative applications. Expert Rev proteomics 5(2):353–360

    PubMed  CAS  Google Scholar 

  • Li KW, Hornshaw MP, Schors RCVD, Watson R, Tate S, Casetta B, Jimenez CR, Gouwenberg Y, Gundelfinger ED, Smalla KH, Smit AB (2004) Proteomics analysis of rat brain postsynaptic density. Implications of the diverse protein functional groups for the integration of synaptic physiology. J Biol Chem 279(2):987–1002

    CAS  Google Scholar 

  • Li M, Wang J, Chen J (2008) A fast agglomerate algorithm for mining functional modules in protein interaction networks. In BioMedical engineering and informatics, 2008 BMEI 2008 international conference on, Sanya, vol 1, pp 3–7

    Google Scholar 

  • Lim J, Hao T, Shaw C, Patel A, Szabó G, Rual J, Fisk C, Li N, Smolyar A, Hill D (2006) A protein–protein interaction network for human inherited ataxias and disorders of purkinje cell degeneration. Cell 125(4):801–814

    PubMed  CAS  Google Scholar 

  • Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, Grace AA (2008) Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 31(5):234–242

    PubMed  CAS  Google Scholar 

  • Liu H, Hu ZZ, Zhang J, Wu C (2006) Biothesaurus: a web-based thesaurus of protein and gene names. Bioinformatics (Oxford, England) 22(1):103–105

    Google Scholar 

  • Lu H, Shi B, Wu G, Zhang Y, Zhu X, Zhang Z, Liu C, Zhao Y, Wu T, Wang J (2006) Integrated analysis of multiple data sources reveals modular structure of biological networks. Biochem Biophys Res Commun 345(1):302–309

    PubMed  CAS  Google Scholar 

  • Lubovac Z, Gamalielsson J, Olsson B (2006) Combining functional and topological properties to identify core modules in protein interaction networks. Proteins 64(4):948–959

    PubMed  CAS  Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005) Bingo: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448–3449

    PubMed  CAS  Google Scholar 

  • Magdaleno S, Jensen P, Brumwell CL, Seal A, Lehman K, Asbury A, Cheung T, Cornelius T, Batten DM, Eden C, Norland SM, Rice DS, Dosooye N, Shakya S, Mehta P, Curran T (2006) Bgem: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system. PLoS Biol 4(4):e86

    PubMed  Google Scholar 

  • Magrane M, Consortium U (2011) Uniprot knowledgebase: a hub of integrated protein data. Database (Oxford) 2011:bar009

    Google Scholar 

  • Maraziotis IA, Dimitrakopoulou K, Bezerianos A (2007) Growing functional modules from a seed protein via integration of protein interaction and gene expression data. BMC Bioinformatics 8:408

    PubMed  Google Scholar 

  • Matos S, Arrais JP, Maia-Rodrigues J, Oliveira JL (2010) Concept-based query expansion for retrieving gene related publications from medline. BMC Bioinformatics 11:212

    PubMed  Google Scholar 

  • Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B, Garapati P, Hemish J, Hermjakob H, Jassal B, Kanapin A, Lewis S, Mahajan S, May B, Schmidt E, Vastrik I, Wu G, Birney E, Stein L, D’Eustachio P (2009) Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res 37(Database issue):D619–D622

    Google Scholar 

  • Matys V, Fricke E, Geffers R, Gössling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV, Kloos DU, Land S, Lewicki-Potapov B, Michael H, Münch R, Reuter I, Rotert S, Saxel H, Scheer M, Thiele S, Wingender E (2003) Transfac: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31(1):374–378

    PubMed  CAS  Google Scholar 

  • McKusick V (2007) Mendelian inheritance in man and its online version, omim. Am J Hum Genet 80(4):588

    PubMed  CAS  Google Scholar 

  • McKusick V, Amberger J (1994) The morbid anatomy of the human genome: chromosomal location of mutations causing disease. J Med Genet 31(4):265–279

    PubMed  CAS  Google Scholar 

  • Mering CV, Krause R, Snel B, Cornell M, Oliver S, Fields S, Bork P (2002) Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417(6887):399–403

    Google Scholar 

  • Meshi O, Shlomi T, Ruppin E (2007) Evolutionary conservation and over-representation of functionally enriched network patterns in the yeast regulatory network. BMC Syst Biol 1:1

    PubMed  Google Scholar 

  • Mi H, Guo N, Kejariwal A, Thomas P (2006) Panther version 6: protein sequence and function evolution data with expanded representation of biological pathways. Nucleic Acids Res 35(suppl 1):D247

    PubMed  Google Scholar 

  • Migaud M, Charlesworth P, Dempster M, Webster LC, Watabe AM, Makhinson M, He Y, Ramsay MF, Morris RG, Morrison JH, O’Dell TJ, Grant SG (1998) Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396(6710):433–439

    PubMed  CAS  Google Scholar 

  • Milenković T, Lai J, Pržulj N (2008) Graphcrunch: a tool for large network analyses. BMC Bioinformatics 9(1):70

    PubMed  Google Scholar 

  • Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA, Devon RS, Clair DMS, Muir WJ, Blackwood DH, Porteous DJ (2000) Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 9(9):1415–1423

    PubMed  CAS  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827

    PubMed  CAS  Google Scholar 

  • Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, Zwaigenbaum L, Fernandez B, Roberts W, Szatmari P, Scherer SW (2007) Contribution of shank3 mutations to autism spectrum disorder. Am J Hum Genet 81(6):1289–1297

    PubMed  CAS  Google Scholar 

  • Morciano M, Burré J, Corvey C, Karas M, Zimmermann H, Volknandt W (2005) Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysis. J Neurochem 95(6):1732–1745

    PubMed  CAS  Google Scholar 

  • Morciano M, Beckhaus T, Karas M, Zimmermann H, Volknandt W (2009) The proteome of the presynaptic active zone: from docked synaptic vesicles to adhesion molecules and maxi-channels. J Neurochem 108(3):662–675

    PubMed  CAS  Google Scholar 

  • Newman MEJ (2004) Analysis of weighted networks. arXiv cond-mat.stat-mech

    Google Scholar 

  • Newman M, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):1–15

    Google Scholar 

  • Noble WS (2009) How does multiple testing correction work? Nat Biotechnol 27(12):1135–1137

    PubMed  CAS  Google Scholar 

  • Nourry C, Grant SGN, Borg JP (2003) Pdz domain proteins: plug and play! Sci Signal 2003(179):RE7

    Google Scholar 

  • Ostlund G, Schmitt T, Forslund K, Köstler T, Messina DN, Roopra S, Frings O, Sonnhammer ELL (2010) Inparanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res 38(Database issue):D196–D203

    Google Scholar 

  • Park D, Lee S, Bolser D, Schroeder M, Lappe M, Oh D, Bhak J (2005) Comparative interactomics analysis of protein family interaction networks using psimap (protein structural interactome map). Bioinformatics 21(15):3234

    PubMed  CAS  Google Scholar 

  • Parkinson H, Kapushesky M, Kolesnikov N, Rustici G, Shojatalab M, Abeygunawardena N, Berube H, Dylag M, Emam I, Farne A, Holloway E, Lukk M, Malone J, Mani R, Pilicheva E, Rayner TF, Rezwan F, Sharma A, Williams E, Bradley XZ, Adamusiak T, Brandizi M, Burdett T, Coulson R, Krestyaninova M, Kurnosov P, Maguire E, Neogi SG, Rocca-Serra P, Sansone SA, Sklyar N, Zhao M, Sarkans U, Brazma A (2009) Arrayexpress update—from an archive of functional genomics experiments to the atlas of gene expression. Nucleic Acids Res 37(Database issue):D868–D872

    Google Scholar 

  • Paulo JA, Brucker WJ, Hawrot E (2009) Proteomic analysis of an alpha7 nicotinic acetylcholine receptor interactome. J Proteome Res 8(4):1849–1858

    PubMed  CAS  Google Scholar 

  • Peng J, Kim MJ, Cheng D, Duong DM, Gygi SP, Sheng M (2004) Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J Biol Chem 279(20):21003–21011

    PubMed  CAS  Google Scholar 

  • Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK, Surendranath V, Niranjan V, Muthusamy B, Gandhi TKB, Gronborg M, Ibarrola N, Deshpande N, Shanker K, Shivashankar HN, Rashmi BP, Ramya MA, Zhao Z, Chandrika KN, Padma N, Harsha HC, Yatish AJ, Kavitha MP, Menezes M, Choudhury DR, Suresh S, Ghosh N, Saravana R, Chandran S, Krishna S, Joy M, Anand SK, Madavan V, Joseph A, Wong GW, Schiemann WP, Constantinescu SN, Huang L, Khosravi-Far R, Steen H, Tewari M, Ghaffari S, Blobe GC, Dang CV, Garcia JGN, Pevsner J, Jensen ON, Roepstorff P, Deshpande KS, Chinnaiyan AM, Hamosh A, Chakravarti A, Pandey A (2003) Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 13(10):2363–2371

    PubMed  CAS  Google Scholar 

  • Persico M, Ceol A, Gavrila C, Hoffmann R, Florio A, Cesareni G (2005) Homomint: an inferred human network based on orthology mapping of protein interactions discovered in model organisms. BMC Bioinformatics 6(Suppl 4):S21

    PubMed  Google Scholar 

  • Pillet V, Zehnder M, Seewald AK, Veuthey AL, Petrak J (2005) Gpsdb: a new database for synonyms expansion of gene and protein names. Bioinformatics 21(8):1743–1744

    PubMed  CAS  Google Scholar 

  • Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, Conroy J, Magalhaes TR, Correia C, Abrahams BS, Almeida J, Bacchelli E, Bader GD, Bailey AJ, Baird G, Battaglia A, Berney T, Bolshakova N, Bölte S, Bolton PF, Bourgeron T, Brennan S, Brian J, Bryson SE, Carson AR, Casallo G, Casey J, Chung BHY, Cochrane L, Corsello C, Crawford EL, Crossett A, Cytrynbaum C, Dawson G, de Jonge M, Delorme R, Drmic I, Duketis E, Duque F, Estes A, Farrar P, Fernandez BA, Folstein SE, Fombonne E, Freitag CM, Gilbert J, Gillberg C, Glessner JT, Goldberg J, Green A, Green J, Guter SJ, Hakonarson H, Heron EA, Hill M, Holt R, Howe JL, Hughes G, Hus V, Igliozzi R, Kim C, Klauck SM, Kolevzon A, Korvatska O, Kustanovich V, Lajonchere CM, Lamb JA, Laskawiec M, Leboyer M, Couteur AL, Leventhal BL, Lionel AC, Liu XQ, Lord C, Lotspeich L, Lund SC, Maestrini E, Mahoney W, Mantoulan C, Marshall CR, McConachie H, McDougle CJ, McGrath J, McMahon WM, Merikangas A, Migita O, Minshew NJ, Mirza GK, Munson J, Nelson SF, Noakes C, Noor A, Nygren G, Oliveira G, Papanikolaou K, Parr JR, Parrini B, Paton T, Pickles A, Pilorge M, Piven J, Ponting CP, Posey DJ, Poustka A, Poustka F, Prasad A, Ragoussis J, Renshaw K, Rickaby J, Roberts W, Roeder K, Roge B, Rutter ML, Bierut LJ, Rice JP, Salt J, Sansom K, Sato D, Segurado R, Sequeira AF, Senman L, Shah N, Sheffield VC, Soorya L, Sousa I, Stein O, Sykes N, Stoppioni V, Strawbridge C, Tancredi R, Tansey K, Thiruvahindrapduram B, Thompson AP, Thomson S, Tryfon A, Tsiantis J, Engeland HV, Vincent JB, Volkmar F, Wallace S, Wang K, Wang Z, Wassink TH, Webber C, Weksberg R, Wing K, Wittemeyer K, Wood S, Wu J, Yaspan BL, Zurawiecki D, Zwaigenbaum L, Buxbaum JD, Cantor RM, Cook EH, Coon H, Cuccaro ML, Devlin B, Ennis S, Gallagher L, Geschwind DH, Gill M, Haines JL, Hallmayer J, Miller J, Monaco AP, Nurnberger JI Jr, Paterson AD, Pericak-Vance MA, Schellenberg GD, Szatmari P, Vicente AM, Vieland VJ, Wijsman EM, Scherer SW, Sutcliffe JS, Betancur C (2010) Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466:368–372

    PubMed  CAS  Google Scholar 

  • Pocklington AJ, Cumiskey M, Armstrong JD, Grant SGN (2006) The proteomes of neurotransmitter receptor complexes form modular networks with distributed functionality underlying plasticity and behaviour. Mol Syst Biol 2:1–14

    Google Scholar 

  • Policies F, Policy D, Subscribers I (2008) Seeking a new biology through text mining. Cell

    Google Scholar 

  • Prifti E, Zucker J, Clement K, Henegar C (2008) Funnet: an integrative tool for exploring transcriptional interactions. Bioinformatics 24(22):2636

    PubMed  CAS  Google Scholar 

  • Przulj N (2007) Biological network comparison using graphlet degree distribution. Bioinformatics 23(2):e177–e183

    PubMed  CAS  Google Scholar 

  • Przulj N, Wigle DA, Jurisica I (2004) Functional topology in a network of protein interactions. Bioinformatics 20(3):340–348

    PubMed  CAS  Google Scholar 

  • Przulj N, Corneil DG, Jurisica I (2006) Efficient estimation of graphlet frequency distributions in protein–protein interaction networks. Bioinformatics 22(8):974–980

    PubMed  CAS  Google Scholar 

  • Puig O (2001) The tandem affinity purification (tap) method: a general procedure of protein complex purification. Methods 24(3):218–229

    PubMed  CAS  Google Scholar 

  • Purcell S, Wray N, Stone J, Visscher P, O’Donovan M, Sullivan P, Sklar P, Ruderfer D, Mcquillin A, Morris D (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460(7256):748–752

    PubMed  CAS  Google Scholar 

  • Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and identifying communities in networks. Proc Natl Acad Sci USA 101(9):2658–2663

    PubMed  CAS  Google Scholar 

  • Rain JC, Selig L, Reuse HD, Battaglia V, Reverdy C, Simon S, Lenzen G, Petel F, Wojcik J, Schächter V, Chemama Y, Labigne A, Legrain P (2001) The protein–protein interaction map of helicobacter pylori. Nature 409(6817):211–215

    PubMed  CAS  Google Scholar 

  • Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–1555

    PubMed  CAS  Google Scholar 

  • Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, González JR, Gratacòs M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME (2006) Global variation in copy number in the human genome. Nature 444(7118):444–454

    PubMed  CAS  Google Scholar 

  • Ringwald M, Davis G, Smith A, Trepanier L, Begley D, Richardson J, Eppig J (1997) The mouse gene expression database gxd. Semin Cell Dev Biol 8(5):489–497

    PubMed  CAS  Google Scholar 

  • Ringwald M, Eppig JT, Begley DA, Corradi JP, McCright IJ, Hayamizu TF, Hill DP, Kadin JA, Richardson JE (2001) The mouse gene expression database (gxd). Nucleic Acids Res 29(1): 98–101

    PubMed  CAS  Google Scholar 

  • Royer L, Reimann M, Andreopoulos B, Schroeder M (2008) Unraveling protein networks with power graph analysis. PLoS Comput Biol 4(7):e1000108

    PubMed  Google Scholar 

  • Rual J, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz G, Gibbons F, Dreze M, Ayivi-Guedehoussou N (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437(7062):1173–1178

    PubMed  CAS  Google Scholar 

  • Ruan J, Zhang W (2007) Identifying network communities with a high resolution. arXiv physics.soc-ph

    Google Scholar 

  • Ruiz-Cañada C, Koh YH, Budnik V, Tejedor FJ (2002) Dlg differentially localizes shaker k+-channels in the central nervous system and retina of drosophila. J Neurochem 82(6):1490–1501

    PubMed  Google Scholar 

  • Ryan TJ, Grant SGN (2009) The origin and evolution of synapses. Nat Rev Neurosci 10(10): 701–712

    PubMed  CAS  Google Scholar 

  • Salter MW, Kalia LV (2004) Src kinases: a hub for nmda receptor regulation. Nat Rev Neurosci 5(4):317–328

    PubMed  CAS  Google Scholar 

  • Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32(Database issue):D449–D451

    Google Scholar 

  • Sandelin A, Alkema W, Engström P, Wasserman WW, Lenhard B (2004) Jaspar: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32(Database issue):D91–D94

    Google Scholar 

  • Sasaki Y, McNaught J, Ananiadou S (2010) The value of an in-domain lexicon in genomics qa. J Bioinform Comput Biol 8(1):147–161

    PubMed  CAS  Google Scholar 

  • Schuemie MJ, Kang N, Hekkelman ML, Kors JA (2010) Genee: gene and protein query expansion with disambiguation. Bioinformatics 26(1):147–148

    PubMed  CAS  Google Scholar 

  • Schwikowski B, Uetz P, Fields S (2000) A network of protein–protein interactions in yeast. Nat Biotechnol 18(12):1257–1261

    PubMed  CAS  Google Scholar 

  • Segal E, Wang H, Koller D (2003) Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics 19(Suppl 1):i264–i271

    PubMed  Google Scholar 

  • Selimi F, Cristea IM, Heller E, Chait BT, Heintz N (2009) Proteomic studies of a single cns synapse type: the parallel fiber/purkinje cell synapse. PLoS Biol 7(4):e83

    PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    PubMed  CAS  Google Scholar 

  • Sheng M, Hoogenraad CC (2007) The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem 76:823–847

    PubMed  CAS  Google Scholar 

  • Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of escherichia coli. Nat Genet 31(1):64–68

    PubMed  CAS  Google Scholar 

  • Shimoyama M, Smith JR, Hayman T, Laulederkind S, Lowry T, Nigam R, Petri V, Wang SJ, Dwinell M, Jacob H, Team R (2011) Rgd: a comparative genomics platform. Hum Genomics 5(2):124–129

    PubMed  CAS  Google Scholar 

  • Simpson TI, Armstrong JD, Jarman AP (2010) Merged consensus clustering to assess and improve class discovery with microarray data. BMC Bioinformatics 11(1):590

    PubMed  Google Scholar 

  • Smith CL, Eppig JT (2009) The mammalian phenotype ontology: enabling robust annotation and comparative analysis. Wiley Interdiscip Rev Syst Biol Med 1(3):390–399

    PubMed  CAS  Google Scholar 

  • Smith CM, Finger JH, Hayamizu TF, McCright IJ, Eppig JT, Kadin JA, Richardson JE, Ringwald M (2007) The mouse gene expression database (gxd): 2007 update. Nucleic Acids Res 35(Database issue):D618–D623

    Google Scholar 

  • Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Nal Acad Sci USA 100(21):12123

    CAS  Google Scholar 

  • Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) Biogrid: a general repository for interaction datasets. Nucleic Acids Res 34(Database issue):D535–D539

    Google Scholar 

  • Stein L, Sternberg P, Durbin R, Thierry-Mieg J, Spieth J (2001) Wormbase: network access to the genome and biology of caenorhabditis elegans. Nucleic Acids Res 29(1):82–86

    PubMed  CAS  Google Scholar 

  • Stone J, O’Donovan M, Gurling H, Kirov G, Blackwood D, Corvin A, Craddock N, Gill M, Hultman C, Lichtenstein P (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455(7210):237–241

    CAS  Google Scholar 

  • Stuart LM, Boulais J, Charriere GM, Hennessy EJ, Brunet S, Jutras I, Goyette G, Rondeau C, Letarte S, Huang H, Ye P, Morales F, Kocks C, Bader JS, Desjardins M, Ezekowitz RAB (2007) A systems biology analysis of the drosophila phagosome. Nature 445(7123):95–101

    PubMed  CAS  Google Scholar 

  • Stumpf MPH, Wiuf C, May RM (2005) Subnets of scale-free networks are not scale-free: sampling properties of networks. Proc Natl Acad Sci USA 102(12):4221–4224

    PubMed  CAS  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550

    PubMed  CAS  Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P, Müller SA, Rammner B, Gräter F, Hub JS, Groot BLD, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127(4):831–846

    PubMed  CAS  Google Scholar 

  • te Velthuis AJW, Admiraal JF, Bagowski CP (2007) Molecular evolution of the maguk family in metazoan genomes. BMC Evol Biol 7:129

    Google Scholar 

  • Theocharidis A, van Dongen S, Enright AJ, Freeman TC (2009) Network visualization and analysis of gene expression data using biolayout express(3d). Nat Protoc 4(10):1535–1550

    PubMed  CAS  Google Scholar 

  • Thomas GM, Huganir RL (2004) Mapk cascade signalling and synaptic plasticity. Nat Rev Neurosci 5(3):173–183

    PubMed  CAS  Google Scholar 

  • Thomas P, Campbell M, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A (2003) Panther: a library of protein families and subfamilies indexed by function. Genome Res 13(9):2129

    PubMed  CAS  Google Scholar 

  • Torii M, Hu Z, Wu CH, Liu H (2009) Biotagger-gm: a gene/protein name recognition system. J Am Med Inform Assoc 16(2):247–255

    PubMed  Google Scholar 

  • Trinidad J, Thalhammer A, Specht C, Lynn A, Baker P, Schoepfer R, Burlingame A (2008) Quantitative analysis of synaptic phosphorylation and protein expression. Mol Cell Proteomics 7(4):684

    PubMed  CAS  Google Scholar 

  • Uetz P, Giot L, Cagney G, Mansfield T, Judson R, Knight J, Lockshon D, Narayan V, Srinivasan M, Pochart P (2000) A comprehensive analysis of protein–protein interactions in saccharomyces cerevisiae. Nature 403(6770):623–627

    PubMed  CAS  Google Scholar 

  • Ulitsky I, Shamir R (2009) Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics 25(9):1158–1164

    PubMed  CAS  Google Scholar 

  • Vêncio R, Shmulevich I (2007) Probcd: enrichment analysis accounting for categorization uncertainty. BMC bioinformatics 8(1):383

    PubMed  Google Scholar 

  • Venkatesan K, Rual JF, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh KI, Yildirim MA, Simonis N, Heinzmann K, Gebreab F, Sahalie JM, Cevik S, Simon C, de Smet AS, Dann E, Smolyar A, Vinayagam A, Yu H, Szeto D, Borick H, Dricot A, Klitgord N, Murray RR, Lin C, Lalowski M, Timm J, Rau K, Boone C, Braun P, Cusick ME, Roth FP, Hill DE, Tavernier J, Wanker EE, Barabási AL, Vidal M (2009) An empirical framework for binary interactome mapping. Nat Method 6(1):83–90

    CAS  Google Scholar 

  • Vidalain PO, Boxem M, Ge H, Li S, Vidal M (2004) Increasing specificity in high-throughput yeast two-hybrid experiments. Methods 32(4):363–370

    PubMed  CAS  Google Scholar 

  • Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E (2009) Ensemblcompara genetrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 19(2): 327–335

    PubMed  CAS  Google Scholar 

  • Walhout AJ, Sordella R, Lu X, Hartley JL, Temple GF, Brasch MA, Thierry-Mieg N, Vidal M (2000) Protein interaction mapping in c. Elegans using proteins involved in vulval development. Science 287(5450):116–122

    CAS  Google Scholar 

  • Walhout AJM, Reboul J, Shtanko O, Bertin N, Vaglio P, Ge H, Lee H, Doucette-Stamm L, Gunsalus KC, Schetter AJ, Morton DG, Kemphues KJ, Reinke V, Kim SK, Piano F, Vidal M (2002) Integrating interactome, phenome, and transcriptome mapping data for the c. Elegans germline. Curr Biol 12(22):1952–1958

    CAS  Google Scholar 

  • Walikonis RS, Jensen ON, Mann M, Provance DW, Mercer JA, Kennedy MB (2000) Identification of proteins in the postsynaptic density fraction by mass spectrometry. J Neurosci 20(11): 4069–4080

    PubMed  CAS  Google Scholar 

  • Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, Nord AS, Kusenda M, Malhotra D, Bhandari A, Stray SM, Rippey CF, Roccanova P, Makarov V, Lakshmi B, Findling RL, Sikich L, Stromberg T, Merriman B, Gogtay N, Butler P, Eckstrand K, Noory L, Gochman P, Long R, Chen Z, Davis S, Baker C, Eichler EE, Meltzer PS, Nelson SF, Singleton AB, Lee MK, Rapoport JL, King MC, Sebat J (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320(5875):539–543

    PubMed  CAS  Google Scholar 

  • Wang J, Li M, Deng Y, Pan Y (2010) Recent advances in clustering methods for protein interaction networks. BMC Genomics 11(Suppl 3):S10

    CAS  Google Scholar 

  • Wernicke S, Rasche F (2006) Fanmod: a tool for fast network motif detection. Bioinformatics (Oxford, England) 22(9):1152–1153

    Google Scholar 

  • Wooten EC, Huggins GS (2011) Mind the dbgap: The application of data mining to identify biological mechanisms. Mol Interv 11(2):95–102

    PubMed  CAS  Google Scholar 

  • Wu K, Carlin R, Siekevitz P (1986) Binding of l-[3h]glutamate to fresh or frozen synaptic membrane and postsynaptic density fractions isolated from cerebral cortex and cerebellum of fresh or frozen canine brain. J Neurochem 46(3):831–841

    PubMed  CAS  Google Scholar 

  • Wuchty S, Oltvai ZN, Barabási AL (2003) Evolutionary conservation of motif constituents in the yeast protein interaction network. Nat Genet 35(2):176–179

    PubMed  CAS  Google Scholar 

  • Yasuyama K, Meinertzhagen IA, Schürmann FW (2002) Synaptic organization of the mushroom body calyx in drosophila melanogaster. J Comp Neurol 445(3):211–226

    PubMed  Google Scholar 

  • Yoshimura Y, Yamauchi Y, Shinkawa T, Taoka M, Donai H, Takahashi N, Isobe T, Yamauchi T (2004) Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography-tandem mass spectrometry. J Neurochem 88(3):759–768

    PubMed  CAS  Google Scholar 

  • Young KH (1998) Yeast two-hybrid: so many interactions, (in) so little time. Biol Reprod 58(2):302–311

    PubMed  CAS  Google Scholar 

  • Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M (2007) The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol 3(4):e59

    PubMed  Google Scholar 

  • Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, Sahalie J, Hirozane-Kishikawa T, Gebreab F, Li N, Simonis N, Hao T, Rual JF, Dricot A, Vazquez A, Murray RR, Simon C, Tardivo L, Tam S, Svrzikapa N, Fan C, Smet ASD, Motyl A, Hudson ME, Park J, Xin X, Cusick ME, Moore T, Boone C, Snyder M, Roth FP, Barabasi AL, Tavernier J, Hill DE, Vidal M (2008a) High-quality binary protein interaction map of the yeast interactome network. Science 322(5898):104–110

    PubMed  CAS  Google Scholar 

  • Yu J, Pacifico S, Liu G, Finley RL (2008b) Droid: the drosophila interactions database, a comprehensive resource for annotated gene and protein interactions. BMC Genomics 9:461

    PubMed  Google Scholar 

  • Yu W, Wulf A, Liu T, Khoury MJ, Gwinn M (2008c) Gene prospector: an evidence gateway for evaluating potential susceptibility genes and interacting risk factors for human diseases. BMC bioinformatics 9:528

    PubMed  Google Scholar 

  • Zapala MA, Hovatta I, Ellison JA, Wodicka L, Rio JAD, Tennant R, Tynan W, Broide RS, Helton R, Stoveken BS, Winrow C, Lockhart DJ, Reilly JF, Young WG, Bloom FE, Lockhart DJ, Barlow C (2005) Adult mouse brain gene expression patterns bear an embryologic imprint. Proc Natl Acad Sci USA 102(29):10357–10362

    PubMed  CAS  Google Scholar 

  • Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, Narasimhan S, Kane DW, Reinhold WC, Lababidi S, Bussey KJ, Riss J, Barrett JC, Weinstein JN (2003) Gominer: a resource for biological interpretation of genomic and proteomic data. Genome Biol 4(4):R28

    PubMed  Google Scholar 

  • Zhang W, Zhang Y, Zheng H, Zhang C, Xiong W, Olyarchuk JG, Walker M, Xu W, Zhao M, Zhao S, Zhou Z, Wei L (2007) Syndb: a synapse protein database based on synapse ontology. Nucleic Acids Res 35(Database issue):D737–D741

    Google Scholar 

  • Zhang B, Park BH, Karpinets T, Samatova NF (2008) From pull-down data to protein interaction networks and complexes with biological relevance. Bioinformatics (Oxford, England) 24(7):979–986

    Google Scholar 

  • Zhong S, Storch KF, Lipan O, Kao MCJ, Weitz CJ, Wong WH (2004) Gosurfer: a graphical interactive tool for comparative analysis of large gene sets in gene ontology space. Appl Bioinformatics 3(4):261–264

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lysimachos Zografos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zografos, L., Pocklington, A.J., Armstrong, J.D. (2012). Reconstructing Models from Proteomics Data. In: Le Novère, N. (eds) Computational Systems Neurobiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3858-4_2

Download citation

Publish with us

Policies and ethics