Skip to main content

Optical Imaging and Control of Neurons

  • Chapter
  • First Online:
Convergence of Terahertz Sciences in Biomedical Systems
  • 1813 Accesses

Abstract

Although remarkable progress has been made in our understanding of the function, organization, and development of the brain by various approaches of modern science and technology, how the brain performs its marvelous function remains unsolved or incompletely understood. This is mainly attributed to the insufficient capability of currently available research tools and conceptual frameworks to deal with enormous complexity of the brain. Hence, in the last couple of decades, a significant effort has been made to crack the complexity of brain by utilizing research tools from diverse scientific areas. The research tools include the optical neurotechnology which incorporates the exquisite characteristics of optics, such as multi-parallel access and non-invasiveness, in sensing and stimulating the excitable membrane of a neuron, the basic functional unit of the brain. This chapter is aimed to serve as a short introduction to the optical neurotechnology for those who wish to use optical techniques as one of their brain research tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bear, M. F., Connors, B. W., Paradiso, M. A.: Neuroscience: Exploring the Brain (3rd ed., Lippincott Williams & Wilkins, 2007)

    Google Scholar 

  2. Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., Lamantia, A.-S.: Neuroscience (5th ed., Sinauer Associates, Inc., 2011)

    Google Scholar 

  3. Bressler, S. L., Menon, V.: Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences 14, 277–290 (2010)

    Article  Google Scholar 

  4. Luo, L., Callaway, E. M., Svoboda, K.: Genetic Dissection of Neural Circuits. Neuron 57, 634–660 (2008)

    Article  Google Scholar 

  5. Guo, Z. V., Hart, A. C., Ramanathan, S.: Optical interrogation of neural circuits in Caenorhabditis elegans. Nat. Methods 6, 891–898 (2009)

    Article  Google Scholar 

  6. Eisenstein, M.: Neural circuits: Putting neurons on the map. Nature 461, 1149–1152 (2009)

    Article  ADS  Google Scholar 

  7. Cohen, L. B. and Salzberg., B. M.: Optical measurement of membrane potential.Rev. Physiol. Biochem. Pharmacol., 83, 35–88 (1978).

    Google Scholar 

  8. Zimmer, C.: 100 trillion connections: New efforts probe and map the brain’s detailed architecture. Sci. Am. Mag. 1, 51–63 (2011)

    Google Scholar 

  9. Brain Facts: A Primer on the Brain and Nervous System (6th ed.), Society for Neuroscience [Online]. Available: http://www.sfn.org/brainfacts

    Google Scholar 

  10. Voglis, G., Tavernarakis, N.: The role of synaptic ion channels in synaptic plasticity. EMBO reports 7,1104–1110 (2006)

    Article  Google Scholar 

  11. Margrie, T. W., Meyer, A. H., Caputi, A., Monyer, H., Hasan, M. T., Schaefer, A. T., Denk, W., Brecht, M. Targeted whole-cell recordings in the mammalian brain in vivo. Neuron 39, 911–918 (2003)

    Article  Google Scholar 

  12. Cohen, L.B.: Changes in neuron structure during action potential propagation and synaptic transmission. Physiological Reviews 53, 373–418 (1973)

    Google Scholar 

  13. Cohen, L.B, Keynes, R.D, Hille, B.: Light scattering and birefringence changes during nerve activity. Nature 218, 438–441 (1968)

    Article  ADS  Google Scholar 

  14. Ritchie, J.M.: Energetic aspects of nerve conduction: The relationships between heat production, electrical activity and metabolism. Progr. Biophys. Mol. Biol. 26,147–187 (1973)

    Article  Google Scholar 

  15. Landowne, D., COHEN, L. B. Changes in light scattering during synaptic activity in the electric organ of the skate, Raia erinacea. Biol. Bull. 137, 407–408 (1969).

    Google Scholar 

  16. Howarth, J.V., Keynes, R.D., Ritchie, J.M. The origin of the initial heat associated with a single impulse in mammalian non-myelinated nerve fibres. J. Physiol. (London) 194, 745–793 (1968)

    Google Scholar 

  17. Hill, D.K.: The volume change resulting from stimulation of a giant nerve fibre. J. Physiol. (London) 111, 304–327 (1950)

    Google Scholar 

  18. Ross, W. N., Salzberg, B. M., Cohen, L. B., Grinvald, A., Davila, H. V., Waggoner, A. S., Wang, C. H.: Changes in absorption, fluorescence, dichroism, and birefringence in stained giant axons : optical measurement of membrane potential. J. Membr. Biol. 33, 141–183 (1977)

    Article  Google Scholar 

  19. Grinvald, A., Manker, A., Segal, M.: Visualization of the spread of electrical activity in rat hippocampal slices by voltage-sensitive optical probes. J. Physiol. (London) 333, 269–291 (1982)

    Google Scholar 

  20. Sakmann, B., Neher, E.: Patch clamp techniques for studying ion channels in excitable membranes. Ann. Rev. Physiol. 46, 455–472 (1984)

    Article  Google Scholar 

  21. Miesenbock, G., Kevrekidis, I.G.: Optical imaging and control of geneticallydesignated neurons in functioning circuits. Annu. Rev. Neurosci. 28, 533–563 (2005)

    Article  Google Scholar 

  22. Kerr, J. N. D., Denk, W.: Imaging in vivo: watching the brain in action. Nat. Rev. Neurosci. 9, 195–205 (2008)

    Article  Google Scholar 

  23. Bashford, C. L.: The measurement of membrane potential using optical indicators. Bioscience Reports 1, 183–196 (1981)

    Article  Google Scholar 

  24. Carlson, G.C., Coulter, D.A.: In vitro functional imaging in brain slices using fast voltage-sensitive dye imaging combined with whole-cell patch recording. Nature Protocols 3, 249–255 (2008)

    Article  Google Scholar 

  25. Siegel, M.S., Isacoff, E.Y.: A genetically encoded optical probe of membrane voltage. Neuron 19, 735–741 (1997)

    Article  Google Scholar 

  26. Tsutsui, H., Karasawa, S., Okamura, Y., Miyawaki, A.: Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat. Methods 5, 683–685 (2008)

    Article  Google Scholar 

  27. Chanda, B., Blunk, R., Faria, L. C., Schweizer, F. E., Mody, I., Bezanilla, F.: A hybrid approach to measuring electrical activity in genetically specified neurons. Nat. Neurosci. 8, 1619–1626 (2005)

    Article  Google Scholar 

  28. Sjulson, L., Miesenbock, G.: Rational optimization and imaging in vivo of a genetically encoded optical voltage reporter. J. Neurosci. 28, 5582–5593 (2008)

    Article  Google Scholar 

  29. . Kralj, J.M., Hochbaum, D.R., Douglass, A.D., Cohen, A.E.: Electrical spiking in Escherichia coli probed with a fluorescent voltage indicating protein. Science 333, 345–348 (2011)

    Article  ADS  Google Scholar 

  30. Kralj, J. M., Douglass, A. D., Hochbaum, D. R., Maclaurin, D., Cohen, A.E. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nature Methods 9, 90–95 (2012)

    Google Scholar 

  31. Scanzani, M., Häusser, M.: Electrophysiology in the age of light. Nature 461, 930–939 (2009)

    Article  ADS  Google Scholar 

  32. Yoshimura, Y., Dantzker, J.L., Callaway, E.M.: Excitatory cortical neurons form fine-scale functional networks. Nature 433, 868–873 (2005)

    Article  ADS  Google Scholar 

  33. Limousin, P., Krack, P., Pollak, P., Benazzouz, A., Ardouin, C., Hoffmann, D., Benabid, A.-L.: Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N. Engl. J. Med. 339, 1105–1111 (1998)

    Google Scholar 

  34. Fork, R. L.: Laser stimulation of nerve cells in Aplysia. Science 171, 907–908 (1971)

    Google Scholar 

  35. Melyan, Z., Tarttelin, E. E., Bellingham, J., Lucas, R. J., Hankins, M. W.: Addition of human melanopsin renders mammalian cells photoresponsive. Nature433, 741–745 (2005)

    Article  ADS  Google Scholar 

  36. Miesenböck, G.: Optogenetic control of cells and circuits. Annu. Rev. Cell Dev. Biol. 27, 731–758 (2011)

    Article  Google Scholar 

  37. Shoham, S., O’Connor, D. H., Sarkisov, D. V., Wang, S. S.: Rapid neurotransmitter uncaging in spatially defined patterns. Nat. Methods 2, 837–843 (2005)

    Article  Google Scholar 

  38. Ellis-Davies, G.C.R.: Caged compounds: Photorelease technology for control of cellular chemistry and physiology. Nat. Methods 4, 619–628 (2007)

    Article  Google Scholar 

  39. Zemelman, B. V., Lee, G. A., Ng, M., Miesenböck, G.: Selective photostimulation of genetically chARGed neurons. Neuron 33, 15–22 (2002)

    Article  Google Scholar 

  40. Volgraf, M., Gorostiza, P., Numano, R., Kramer, R. H., Isacoff, E. Y., Trauner, D. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2, 47–52 (2006)

    Article  Google Scholar 

  41. Banghart, M., Borges, K., Isacoff, E., Trauner, D., Kramer, R. H. Lightactivatedion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004)

    Article  Google Scholar 

  42. Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., Bamberg, E.: Channelrhodopsin-2, a directly lightgated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003)

    Article  ADS  Google Scholar 

  43. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K.: Millisecondtimescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  Google Scholar 

  44. . Zhang, F., Aravanis, A. M., Adamantidis, A., de Lecea, L., Deisseroth, K.: Circuit-breakers: Optical technologies for probing neural signals and systems. Nat. Rev. Nwurosci. 8, 577–581 (2007).

    Article  Google Scholar 

  45. Zhang, F., Wang, L.-P., Brauner, M., Liewald, J. F., Kay, K., Watzke, N., Wood, P. G., Bamberg, E., Nagel, G., Gottschalk, A., Deisseroth, K.: Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007)

    Article  ADS  Google Scholar 

  46. Petreanu, L., Huber, D., Sobczyk, A., Svoboda, K. Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007)

    Article  Google Scholar 

  47. Zhang, F., Wang ,L.P., Boyden, E.S., Deisseroth, K.: Channelrhodopsin-2 and optical control of excitable cells. Nat. Methods 3, 785–792 (2006)

    Article  Google Scholar 

  48. Balu, R., Zhang, H., Zukowski, E., Chen, J.Y., Markelz, A.G., Gregurick, S.K.: Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences. Biophys. J. 94(8), 3217–3226 (2008)

    Article  ADS  Google Scholar 

  49. Siegel, P. H., Pikov, V.: THz in biology and medicine: towards quantifying and understanding the interaction of millimeter- and submillimeter-waves with cells and cell processes. SPIE Photonics West: BiOS, San Francisco, CA, USA Jan 23-28, 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon-Kyu Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Song, YK. (2012). Optical Imaging and Control of Neurons. In: Park, GS., et al. Convergence of Terahertz Sciences in Biomedical Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3965-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-3965-9_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-3964-2

  • Online ISBN: 978-94-007-3965-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics