Skip to main content

Electron Beam Sources Based on Carbon Nanotube for THz Applications

  • Chapter
  • First Online:
Convergence of Terahertz Sciences in Biomedical Systems

Abstract

Performance of electron emitter plays an essential role in the detection and generation of electromagnetic wave signals. It becomes technologically challenging from spanning terahertz applications, due to the lack of sufficient power sources. The vacuum THz amplifier, such as a travelling wave tube or a klystron is practically used to increase the output power. The characteristic of these amplifiers is mainly represented by the performance of electron beam source which has to deliver a sufficient current in order to allow an amplification of the THz signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fowler, R.H., Nordheim, L.: Electron emission in intense electric fields. Proc. R. Soc. Lond. A 119(781), 173–181 (1928)

    Google Scholar 

  2. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  ADS  Google Scholar 

  3. Hong, S., Myung, S.: Nanotube electronics: a flexible approach to mobility. Nat. Nano. 2(4), 207–208 (2007)

    Article  Google Scholar 

  4. Frank, S., et al.: Carbon nanotube quantum resistors. Science 280(5370), 1744–1746 (1998)

    Article  ADS  Google Scholar 

  5. Lau, A.K.-T., Hui, D.: The revolutionary creation of new advanced materials—carbon nanotube composites. Comp. Pt. B Eng. 33(4), 263–277 (2002)

    Article  Google Scholar 

  6. Hone, J., et al.: Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59(4), R2514 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  7. Che, J., et al.: Thermal conductivity of carbon nanotubes. Nanotechnology 11(2), 65 (2000)

    Article  ADS  Google Scholar 

  8. Berber, S., Kwon, Y.-K., Tománek, D.: Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(20), 4613 (2000)

    Article  ADS  Google Scholar 

  9. Yu, M.-F., et al.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)

    Article  ADS  Google Scholar 

  10. Peng, B., et al.: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nano. 3(10), 626–631 (2008)

    Article  Google Scholar 

  11. Minus, M., Kumar, S.: The processing, properties, and structure of carbon fibers. JOM J. Min. Metals Mat. Soc. 57(2), 52–58 (2005)

    Article  Google Scholar 

  12. Vaisman, L., Wagner, H.D., Marom, G.: The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid Interface Sci. 128–130, 37–46 (2006)

    Article  Google Scholar 

  13. Kang, Y., Taton, T.A.: Micelle-encapsulated carbon nanotubes: a route to nanotube composites. J. Am. Chem. Soc. 125(19), 5650–5651 (2003)

    Article  Google Scholar 

  14. Ros, T.G., et al.: Surface oxidation of carbon nanofibres. Chem. Eur. J.) 8(5), 1151–1162 (2002)

    Article  Google Scholar 

  15. Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes—the route toward applications. Science 297(5582), 787–792 (2002)

    Article  ADS  Google Scholar 

  16. Andrews, R., Weisenberger, M.C.: Carbon nanotube polymer composites. Curr. Opin. Solid State Mater. Sci. 8(1), 31–37 (2004)

    Article  ADS  Google Scholar 

  17. Tans, S.J., Verschueren, A.R.M., Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393(6680), 49–52 (1998)

    Article  ADS  Google Scholar 

  18. Li, Z., et al.: Microstructure of carbon nanotubes/PET conductive composites fibers and their properties. Compos. Sci. Technol. 66(7–8), 1022–1029 (2006)

    Article  Google Scholar 

  19. Xu, J., Fisher, T.S.: Enhancement of thermal interface materials with carbon nanotube arrays. Int. J. Heat Mass Transf. 49(9–10), 1658–1666 (2006)

    Article  Google Scholar 

  20. Artukovic, E., et al.: Transparent and flexible carbon nanotube transistors. Nano Lett. 5(4), 757–760 (2005)

    Article  ADS  Google Scholar 

  21. Hu, R., et al.: Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett. 10(3), 838–846 (2010)

    Article  ADS  Google Scholar 

  22. de Heer, W.A., Châtelain, A., Ugarte, D.: A carbon nanotube field-emission electron source. Science 270(5239), 1179–1180 (1995)

    Article  ADS  Google Scholar 

  23. Choi, W., et al.: Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75(20), 3129 (1999)

    Article  ADS  Google Scholar 

  24. Zhang, J., et al.: Efficient fabrication of carbon nanotube point electron sources by dielectrophoresis. Adv. Mater. 16(14), 1219 (2004)

    Article  Google Scholar 

  25. Wang, Z.L., et al.: In situ imaging of field emission from individual carbon nanotubes and their structural damage. Appl. Phys. Lett. 80(5), 856 (2002)

    Article  ADS  Google Scholar 

  26. Wei, Y., et al.: Stability of carbon nanotubes under electric field studied by scanning electron microscopy. Appl. Phys. Lett. 79(27), 4527 (2001)

    Article  ADS  Google Scholar 

  27. Li, W.Z., et al.: Large-scale synthesis of aligned carbon nanotubes. Science 274(5293), 1701–1703 (1996)

    Article  ADS  Google Scholar 

  28. Wei, B.Q., et al.: Microfabrication technology: organized assembly of carbon nanotubes. Nature 416(6880), 495–496 (2002)

    Article  ADS  Google Scholar 

  29. Hata, K., et al.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306(5700), 1362–1364 (2004)

    Article  ADS  Google Scholar 

  30. Thong, J.: High-current field emission from a vertically aligned carbon nanotube field emitter array. Appl. Phys. Lett. 79(17), 2811 (2001)

    Article  ADS  Google Scholar 

  31. Fan, S., et al.: Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512–514 (1999)

    Article  ADS  Google Scholar 

  32. Ando, Y., Iijima, S.: Preparation of carbon nanotubes by arc-discharge evaporation. Jpn. J. Appl. Phys. Pt. 2 Lett. 32(1A–B), L107–L109 (1993)

    Google Scholar 

  33. Li, J., et al.: Field emission characteristic of screen-printed carbon nanotube cathode. Appl. Surf. Sci. 220(1–4), 96–104 (2003)

    Article  ADS  Google Scholar 

  34. Xiomara, C.-C., et al.: A carbon nanotube field emission cathode with high current density and long-term stability. Nanotechnology 20(32), 325707 (2009)

    Article  Google Scholar 

  35. Jo, S.: Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Appl. Phys. Lett. 82(20), 3520 (2003)

    Article  ADS  Google Scholar 

  36. Jiang, K., Li, Q., Fan, S.: Spinning continuous carbon nanotube yarns. Nature 419(6909), 801 (2002)

    Article  ADS  Google Scholar 

  37. Zhang, M., Atkinson, K.R., Baughman, R.H.: Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700), 1358–1361 (2004)

    Article  ADS  Google Scholar 

  38. Lee, C.J., et al.: Field emission characteristics of point emitters fabricated by a multiwalled carbon nanotube yarn. Nanotechnology 20(31), 315201 (2009)

    Google Scholar 

  39. Wei, Y.: Efficient fabrication of field electron emitters from the multiwalled carbon nanotube yarns. Appl. Phys. Lett. 89(6), 063101 (2006)

    Article  ADS  Google Scholar 

  40. Zakhidov, A.A., et al.: Field emission of electrons by carbon nanotube twist-yarns. Appl. Phys. A Mater. Sci. Proc. 88(4), 593–600 (2007)

    Article  ADS  Google Scholar 

  41. Vigolo, B., et al.: Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290(5495), 1331–1334 (2000)

    Article  ADS  Google Scholar 

  42. Kozlov, M.E., et al.: Spinning solid and hollow polymer-free carbon nanotube fibers. Adv. Mater. 17(5), 614–617 (2005)

    Article  Google Scholar 

  43. Ericson, L.M., et al.: Macroscopic, neat, single-walled carbon nanotube fibers. Science 305(5689), 1447–1450 (2004)

    Article  ADS  Google Scholar 

  44. Jang, E.Y., et al.: Macroscopic single-walled-carbon-nanotube fiber self-assembled by dip-coating method. Adv. Mater. 21(43), 4357–4361 (2009)

    Article  Google Scholar 

  45. Kim, W.J., et al.: Better than 10 mA field emission from an isolated structure emitter of a metal oxide/CNT composite. ACS Nano 5(1), 429–435 (2010)

    Article  Google Scholar 

  46. Sugie, H., et al.: Carbon nanotubes as electron source in an x-ray tube. Appl. Phys. Lett. 78(17), 2578–2580 (2001)

    Article  ADS  Google Scholar 

  47. Yue, G.Z., et al.: Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode. Appl. Phys. Lett. 81(2), 355–357 (2002)

    Article  ADS  Google Scholar 

  48. Matsumoto, T., Mimura, H.: Point x-ray source using graphite nanofibers and its application to x-ray radiography. Appl. Phys. Lett. 82(10), 1637–1639 (2003)

    Article  ADS  Google Scholar 

  49. Cheng, Y., et al.: Dynamic radiography using a carbon-nanotube-based field-emission x-ray source. Rev. Sci. Instrum. 75(10), 3264–3267 (2004)

    Article  ADS  Google Scholar 

  50. Zhang, J., et al.: A nanotube-based field emission x-ray source for microcomputed tomography. Rev. Sci. Instrum. 76(9), 094301–094304 (2005)

    Article  ADS  Google Scholar 

  51. Liu, Z., et al.: Carbon nanotube based microfocus field emission x-ray source for microcomputed tomography. Appl. Phys. Lett. 89(10), 103111-3 (2006)

    ADS  Google Scholar 

  52. Kawakita, K., et al.: Development of microfocused x-ray source by using carbon nanotube field emitter. Rev. Sci. Instrum. 77(5), 054302-6 (2006)

    Google Scholar 

  53. Tolt, Z.L., et al.: Carbon nanotube cold cathodes for application in low current x-ray tubes. J. Vac. Sci. Technol. B 26(2), 706–710 (2008)

    Article  Google Scholar 

  54. Heo, S.H., Ihsan, A., Cho, S.O.: Transmission-type microfocus x-ray tube using carbon nanotube field emitters. Appl. Phys. Lett. 90(18), 183109-3 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Hyup Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kim, Y.H., Kang, T.J., Kim, W.J., Jang, E.Y., Lee, J.S. (2012). Electron Beam Sources Based on Carbon Nanotube for THz Applications. In: Park, GS., et al. Convergence of Terahertz Sciences in Biomedical Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3965-9_4

Download citation

Publish with us

Policies and ethics