Skip to main content

Simulation of Fundamental Properties of CNT- and GNR-Metal Interconnects for Development of New Nanosensor Systems

  • Conference paper
  • First Online:
Nanodevices and Nanomaterials for Ecological Security

Abstract

Cluster approach based on the multiple scattering theory formalism, realistic analytical and coherent potentials, as well as effective medium approximation (EMA-CPA), can be effectively used for nano-sized systems modeling. Major attention is paid now to applications of carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) with various morphology which possess unique physical properties in nanoelectronics, e.g., contacts of CNTs or (GNRs) with other conducting elements of a nanocircuit, which can be promising candidates for interconnects in high-speed electronics. The main problems solving for resistance C-Me junctions with metal particles appear due to the influence of chirality effects in the interconnects of single-wall (SW) and multi-wall (MW) CNTs, single-layer (SL) and multi-layer (ML) GNRs with the fitting metals (Me = Ni, Cu, Ag, Pd, Pt, Au) for the predefined carbon system geometry. Using the models of ‘liquid metal’ and ‘effective bonds’ developed in the framework of the presented approach and Landauer theory, we can predict resistivity properties for the considered interconnects. We have also developed the model of the inter-wall interaction inside MW CNTs, which demonstrates possible ‘radial current’ losses. CNT- and GNR- Metal interconnects in FET-type nanodevices provide nanosensoring possibilities for local physical (mechanical), chemical and biochemical influences of external medium. At the same time, due to high concentrations of dangling bonds CNT- and GNR- Metal interconnects as interfaces are also considered as electrically, magnetically and chemically sensitive elements for novel nanosensor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahlskog M, Laurent C, Baxendale M, Huhtala M (2004) Electronic properties and applications of carbon nanotubes. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol 3. California: American Science Publishers, Stevenson Ranch, pp 139–161

    Google Scholar 

  2. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic, San Diego

    Google Scholar 

  3. Tans SJ, Verschueren RM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52

    Article  ADS  Google Scholar 

  4. Tersoff J (1999) Contact resistance of carbon nanotubes. Appl Phys Lett 74:2122–2124

    Article  ADS  Google Scholar 

  5. Shunin Yu N, Zhukovskii Yu F, Burlutskaya NY, Bellucci S (2011) Resistance simulations for junctions of SW and MW carbon nanotubes with various metal substrates. Cent Eur J Phys 9(2):519–529

    Google Scholar 

  6. Wu J, Zang J, Larade B, Guo H, Xong XG, Liu F (2004) Computational designing of carbon nanotube electromechanical pressure sensors. Phys Rev B 69:153406–153409

    Article  ADS  Google Scholar 

  7. Sotiropoulou S, Chaniotakis NA (2003) Carbon nanotube array-based biosensor. Anal Bioanal Chem 375:103–105

    Google Scholar 

  8. Ghosh S, Sood AK, Kumar N (2003) Carbon nanotube flow sensors. Science 299:1042–1044

    Article  ADS  Google Scholar 

  9. Akyildiz IF, Jornet JM (2010) Electromagnetic wireless nanosensor networks. Nano Commun Netw J (Elsevier) 1(1):3–19

    Article  Google Scholar 

  10. Dong L, Jiao J, Foxley S, Tuggle DW, Mosher CL, Grathoff GH (2002) Effects of hydrogen on the formation of aligned carbon nanotubes by chemical vapor deposition. J Nanosci Nanotechnol 2(2):155–160

    Article  Google Scholar 

  11. Lambin P, Vigneron JP, Fonseca A, Nagy JB, Lucas AA (1996) Atomic structure and electronic properties of a bent carbon nanotube. Synth Met 77:249–252

    Article  Google Scholar 

  12. Chico L, Crespi VH, Benedict LX, Louie SG, Cohen ML (1996) Pure carbon nanoscale devices: nanotube heterojunctions. Phys Rev Lett 76:971–974

    Article  ADS  Google Scholar 

  13. Rochefort A, Salahub DR, Avouris P (1998) The effect of structural distortions on the electronic structure of carbon nanotubes. Chem Phys Lett 297:45–50

    Article  ADS  Google Scholar 

  14. Zhao B, Itkis ME, Niyogi S, Hu H, Perea DE, Haddon RC (2004) Extinction coefficients and purity of single-walled carbon nanotubes. J Nanosci Nanotechnol 4:995–1004

    Article  Google Scholar 

  15. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975

    Article  Google Scholar 

  16. Paladugu MC, Maneesh K, Nair PK, Haridoss P (2005) Synthesis of carbon nanotubes by arc discharge in open air. J Nanosci Nanotechnol 5:747–752

    Article  Google Scholar 

  17. Rochefort A, Avouris P, Lesage F, Salahub DR (1999) Electrical and mechanical properties of distorted carbon nanotubes. Phys Rev B 60:13824–13830

    Article  ADS  Google Scholar 

  18. Gajewski S, Maneck HE, Knoll U, Neubert D, Dorfel I, Mach R, Strauss B, Friedrich JF (2003) Purification of single walled carbon nanotubes by thermal gas phase oxidation. Diamond Relat Mater 12:816–820

    Article  ADS  Google Scholar 

  19. Joseph H, Swafford B, Terry S (1997) MEMS in the medical world. Sens Mag 14:47–51

    Google Scholar 

  20. Hsu TR (2002) MEMS and microsystems: design and manufacture. McGraw-Hill, Boston

    Google Scholar 

  21. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E, Stricker S (2000) Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanalysis 12:317–325

    Article  Google Scholar 

  22. Chopra S, McGuire K, Gothard N, Rao AM (2003) Selective gas detection using a carbon nanotube sensor. Appl Phys Lett 83:2280–2282

    Article  ADS  Google Scholar 

  23. Ong KG, Zeng K, Grimes CA (2002) A wireless, passive carbon nanotube-basedgas sensor. IEEE Sens J 2:82–88

    Article  Google Scholar 

  24. Wong YM, Kang WP, Davidson JL, Wisitsora-at A, Soh KL (2003) A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection. Sens Actuators B 93:327–332

    Article  Google Scholar 

  25. Cinke M, Li J, Chen B, Cassell A, Delzeit L, Han J, Meyyappan M (2002) Pore structure of raw and purified HiPco single-walled carbon nanotubes. Chem Phys Lett 365:69–74

    Article  ADS  Google Scholar 

  26. Desai SC, Willitsford AH, Sumanasekera GU, Yu M, Tian WQ, Jayanthi CS, Wu SY (2010) Hypergolic fuel detection using individual single walled carbon nanotube networks. J Appl Phys 107:114509–114516

    Article  ADS  Google Scholar 

  27. Shunin Yu N, Schwartz KK (1997) Correlation between electronic structure and atomic configurations in disordered solids. In: Tennyson RC, Kiv AE (eds) Computer modelling of electronic and atomic processes in solids. Kluwer Academic. Publisher, Dodrecht/Boston/London, pp 241–257

    Google Scholar 

  28. Shunin Yu N, Zhukovskii Yu F, Bellucci S (2008) Simulations of properties of carbon nanotubes using the effective media approach. Comput Model New Technol 12(2):66–77

    Google Scholar 

  29. Ziman JM (1979) Models of disorder. Cambridge University Press, New York, Chap. 10

    Google Scholar 

  30. Shunin Yu N (1991) Simulation of atomic and electronic structures of disordered semiconductors, Dr.Sc.Habil. Thesis (Phys.& Math.). Riga-Salaspils

    Google Scholar 

  31. Gaspar R (1952) Über ein analitisches Näharungsverfachren zur Bestimung von Eigenfunktionen und Energieeigenwerten von Atomelektronen. Acta Phys Acad Sci Hung 2:151–178; Über eine Approximation des Hartree-Fockschen Potential dürch eine universelle Potentialfunktion. Acta Phys Acad Sci Hung 3:263–286

    Google Scholar 

  32. Economou EL (2006) Green’s functions in quantum physics, vol 7, 3rd edn, Solid State Ser. Springer, Berlin/Heidelberg

    Google Scholar 

  33. Slater JC (1974) The self-consistent field for molecules and solids, vol 4. McGraw-Hill Book Company, New York

    Google Scholar 

  34. Ehrenreich H, Schwartz L (1976) The electronic structure of alloys. In: Solid state physics, vol 31. Academic Press, New York/San Francisco/London

    Google Scholar 

  35. Soven P (1967) Coherent-potential model of substitutional disordered alloys. Phys Rev 156:809–813

    Article  ADS  Google Scholar 

  36. Stone D, Szafer A (1988) What is measured when you measure a resistance? The Landauer formula revisited. IBM J Res Dev 32(3):384–413

    Article  Google Scholar 

  37. Ding F, Larsson P, Larsson JA, Ahuja R, Duan H, Rose A, Bolton K (2008) The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbo nanotubes. Nano Lett 8:463–468

    Article  ADS  Google Scholar 

  38. Shunin Yu N (2009) Generic challenges for fundamental research in Nanomaterials science. In: Dosch H, Van de Voorde MH (eds) GENNESYS white paper. Max-Planck-Institut für Metallforschung, Stuttgart, pp 8–29

    Google Scholar 

  39. Uryu S (2004) Electronic states and quantum transport in double-wall carbon nanotubes. Phys Rev B 69:075402–075412

    Article  MathSciNet  ADS  Google Scholar 

  40. Lunde AM, Flensberg K, Jauho A-P (2005) Intershell resistance in multiwall carbon nanotubes: a Coulomb drag study. Phys Rev B 71:125408–125425

    Article  ADS  Google Scholar 

  41. Kordrostami Z, Sheikhi MH, Mohammadzadegan R (2008) Modeling electronic properties of multiwall carbon nanotubes. Fuller Nanotub Carbon Nanostruct 16(1):66–77

    Article  Google Scholar 

  42. Shunin Yu N, Zhukovskii Yu F, Burlutskaya N, Gopeyenko VI, Bellucci S (2010) Theoretical resistance simulations for junctions of SW and MW carbon nanotubes with metal substrates in nanoelectronic devices. Comput Model New Technol 14(2):7–19

    Google Scholar 

  43. Shunin Yu N, Zhukovskii Yu F, Gopejenko VI, Burlutskaya N, Bellucci S (2011) Ab Initio simulations on electric properties for junctions between carbon nanotubes and metal electrodes. Nanosci Nanotechnol Lett 3:816–825

    Google Scholar 

  44. Jeong-O Lee, Park C, Ju-Jin Kim, Jinhee Kim, Jong Wan Park, Kyung-Hwa Yoo (2000) Formation of low-resistance ohmic contacts between carbon nanotube and metal electrodes by a rapid thermal annealing method. J Phys D Appl Phys 33:1953–1956

    Article  ADS  Google Scholar 

  45. Shuba MV, Slepyan GYa, Maksimenko SA, Thomsen C, Lakhtakia A (2009) Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes. Phys Rev B 79:155403–155420

    Article  ADS  Google Scholar 

  46. Miano G, Forestiere C, Maffucci A, Maksimenko SA, Slepyan GY (2011) Signal propagation in carbon nanotubes of arbitrary chirality. IEEE Trans Nanotechnol 10(1):135–149

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study has been supported by Grant EC FP7 ICT-2007-1, Proposal for 21625 CATHERINE Project (2008–2011): Carbon nAnotube Technology for High-speed nExt-geneRation nano-InterconNEcts and Grant EU FP7 CACOMEL project FP7-247007, Call ID ‘FP7-PEOPLE-2009-IRSES’, 2010–2014 Nanocarbon based components and materials for high frequency electronics. We thank Prof. E.A. Kotomin for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri N. Shunin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Shunin, Y.N., Zhukovskii, Y.F., Burlutskaya, N.Y., Gopeyenko, V.I., Bellucci, S. (2012). Simulation of Fundamental Properties of CNT- and GNR-Metal Interconnects for Development of New Nanosensor Systems. In: Shunin, Y., Kiv, A. (eds) Nanodevices and Nanomaterials for Ecological Security. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4119-5_22

Download citation

Publish with us

Policies and ethics