Skip to main content

Decarbonization of the Atmosphere: Role of the Boreal Forest Under Changing Climate

  • Chapter
  • First Online:
Recarbonization of the Biosphere

Abstract

The boreal forest, with an area of about 11.4 million km2, is the second largest terrestrial biome and plays a critical role in the global carbon (C) cycle. Its role in either accelerating or slowing climate change depends on whether the boreal forest is a net C source or a net C sink. The boreal forest stores 715.2 Pg C with 430.2 Pg present in peatlands and the remaining in forest ecosystems. In forest, about 60% of total C is present in the soil. The boreal forest sequesters C in surface vegetation, and has accumulated and conserved annual increments of C for millennia in soils, permafrost deposits, wetlands and peatlands. The net annual C sink of the boreal forest increased significantly over the last 20 years, from 0.54 Pg C year−1 to 1.07 Pg C year−1. The future C balance of the boreal forest largely depends on the frequency and intensity of different disturbances, changes in species composition, forest management regimes and alterations to the nutrient and moisture regimes under changing climate conditions. The role of the boreal forest in the decarbonization of the atmosphere can be strengthened through techniques that reduce the time for stand establishment (such as site preparation, planting, and weed control) or increase the available nutrients for growth, or through the selection of species that are more productive. Fire- and insect-protection activities have a strong impact on the C sink strength of the boreal landscape. Therefore, reducing the area prone to fire and insect mortality, and extending the rotation age for holding C longer in older age classes will strongly increase the capacity of the boreal forest to decarbonize the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BOREAS:

Boreal Ecosystem-Atmosphere Study

C:

carbon

CO2 :

carbon dioxide

DOY:

day of year

R :

ecosystem respiration

EC:

eddy-covariance

FLA:

Flakaliden, Sweden

FYS:

Fyedorovskoye, European Russia

GHGs:

greenhouse gases

GDP:

gross domestic product

GEP:

gross ecosystem productivity or photosynthesis

HYT:

Hyytiälä, Finland

P :

mean annual precipitation

T :

mean annual soil temperature

Ta :

air temperature

CH4 :

methane

NEE:

net ecosystem exchange

NEP:

net ecosystem productivity

NPP:

net primary productivity

N:

nitrogen

N2O:

nitrous oxide

NOPEX:

Northern Hemisphere Climate Processes Land-surface Experiment

NOBS:

Northern Old Black Spruce, Manitoba, Canada

NOR:

Norunda, Sweden

OM:

organic matter

PFT:

plant functional type

R h :

heterotrophic respiration

SOA:

Southern Old Aspen, Saskatchewan, Canada

SOBS:

Southern Old Black Spruce, Saskatchewan, Canada

SOJP:

Southern Old Jack Pine, Saskatchewan, Canada

ZOP:

Zotino, Central Siberia

References

  • Amiro BD (2001) Paired-tower measurements of carbon and energy fluxes following disturbance in the boreal forest. Glob Change Biol 7:253–268

    Article  Google Scholar 

  • Apps MJ, Kurz WA, Luxmoore RJ et al (1993) Boreal forests and tundra. Water Air Soil Pollut 70:39–53

    Article  CAS  Google Scholar 

  • Baldocchi D (2008) Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26

    Article  CAS  Google Scholar 

  • Barr AG, Black TA, McCaughey H (2009) Climatic and phenological controls of the carbon and energy balances of three contrasting boreal forest ecosystems in Western Canada. In: Noormets A (ed) Phenology of ecosystem processes. Springer, New York

    Google Scholar 

  • Betts RA (2000) Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408:187–190

    Article  PubMed  CAS  Google Scholar 

  • Bhatti JS, Tarnocai C (2009) Influence of climate and land use change on carbon in agriculture, forest, and peatland ecosystems across Canada. In: Soil carbon sequestration and the greenhouse effect, 2nd edn, SSSA special publication 57. Soil Science Society of America, Madison, pp 47–70

    Google Scholar 

  • Binkley CS, Apps MJ, Dixon RK et al (1997) Sequestering carbon in natural forests. Crit Rev Environ Sci Technol 27S1:23–45

    Google Scholar 

  • Black TA, Gaumont-Guay D, Jassal RS et al (2005) Measurement of carbon dioxide exchange between the boreal forest and the atmosphere. In: Griffiths H, Jarvis P (eds) Carbon balance of forest biomes. BIOS Scientific Publishers, New York

    Google Scholar 

  • Bond-Lamberty B, Wang C, Gower ST (2004) Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Glob Change Biol 10:473–487

    Article  Google Scholar 

  • Bridgeham SD, Megonigal JP, Keller JK et al (2008) Wetlands. In: King AW, Dilling DF et al (eds) The first state of the carbon cycle report (SOCCR): the North American carbon budget and implications for the global carbon cycle. A report by the U.S. Climate Change Science Program and the subcommittee on global change research. National Oceanic and Atmospheric Administration Climate Program Office, Silver Spring

    Google Scholar 

  • Caldeira K, Morgan MG, Baldocchi D et al (2004) A portfolio of carbon management options. In: Field CB, Raupach MR (eds) Global carbon cycle: integrating humans, climate, and the natural world. CCFM (Canadian Council of Forest Ministers). SCOPE 62. Island Press, Washington, DC

    Google Scholar 

  • CCFM (Canadian Council of Forest Ministers) (2002) Compendium of Canadian forestry statistics. Natural Resources Canada, Ottawa, Canada

    Google Scholar 

  • Choi W-J, Chang SX, Bhatti JS (2007) Drainage affects tree growth and C and N dynamics in minerotrophic peatland as revealed by tree-ring and C and N isotopic analysis. Ecology 88:243–253

    Article  Google Scholar 

  • Christensen TR, Friborg T (eds) (2004) EU peatlands: current carbon stocks and trace gas fluxes. European Commission, CarboEurope-GHG report 7, specific study 4

    Google Scholar 

  • Conard SG, Ivanova GA (1997) Wildfire in Russian boreal forests – potential impacts of fire regime characteristics on emissions and global carbon balance estimates. Environ Poll 98:305–313

    Article  CAS  Google Scholar 

  • Conard SG, Sukhinin AI, Stocks BJ et al (2002) Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia. Clim Chang 55:197–211

    Article  CAS  Google Scholar 

  • Dale VH, Joyce LA, McNulty S et al (2001) Climate change and forest disturbances. Bioscience 51:723–734

    Article  Google Scholar 

  • Davidson C (1998) Issues in measuring landscape fragmentation. Wildl Soc Bull 26:32

    Google Scholar 

  • Dixon RK, Krankina ON (1993) Forest fires in Russia: carbon dioxide emissions to the atmosphere. Can J For Res 23:700–705

    Article  CAS  Google Scholar 

  • Dixon RK, Brown S, Houghton RA et al (1994) Carbon pools and flux of global forest ecosystems. Science 263:185

    Article  PubMed  CAS  Google Scholar 

  • Dunn AL, Barford CA, Wfsy SC et al (2006) A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. Glob Change Biol 12:1–14

    Article  Google Scholar 

  • FAO (Food and Agricultural Organization, United Nations) (2001)

    Google Scholar 

  • Fitzsimmons M (2002) Effects of deforestation and reforestation on landscape spatial structure in boreal Saskatchewan. Can J For Res 32:843

    Article  Google Scholar 

  • Flannigan MD, Bergeron Y, Engelmark O et al (1998) Future wildfire in circumboreal forests in relation to global warming. J Veg Sci 9:469–476

    Article  Google Scholar 

  • Flannigan MD, Campbell ID, Wotton M et al (2001) Future fire in Canada’s boreal forest: paleoecology, GCM and RCM results. Can J For Res 31:854–864

    Article  Google Scholar 

  • Freeman C, Fenner N, Ostle NJ (2004) Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430:195–198

    Article  PubMed  CAS  Google Scholar 

  • Global Carbon Project (2008) Carbon budget and trends 2007. www.globalcarbonproject.org. Accessed 26 Sept 2008

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Goulden ML, Wofsy SC, Harden JW et al (1998) Sensitivity of boreal forest carbon balance to soil thaw. Science 279:214–217

    Article  PubMed  CAS  Google Scholar 

  • Hare FK, Ritchie JC (1972) The boreal microclimates. Geogr Rev 62:333–365

    Article  Google Scholar 

  • Hirsch AI, Trumbore SE, Goulden ML (2002) Direct measurement of the deep soil respiration accompanying seasonal thawing of a boreal forest soil. J Geophys Res 108:1–10

    Article  Google Scholar 

  • Hobbs NT, Theobald DM (2001) Effects of landscape change on wildlife habitat: applying ecological principles and guidelines in the western United States. In: Dale VH, Haeuber RA (eds) Applying ecological principles to land management. Springer, New York

    Google Scholar 

  • Houghton RA (2000) Interannual variability in the global carbon cycle. J Geophys Res 105:20121–20126

    Article  CAS  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2001a) Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DG et al (eds) Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2001) Climate change 2001: impacts, adaptation and vulnerability. In: McCarthy JJ, Canziani OF, Leary NA et al (eds) Contribution of working group II to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007) Chapter 4: ecosystems, their properties, goods and services. Fourth assessment report, climate change. Working group II report: impact, adaptation and vulnerability

    Google Scholar 

  • Janssens IA, Lankreijer H, Matteucci G et al (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob Change Biol 7:269–278

    Article  Google Scholar 

  • Jassal RS, Black TA, Chen B et al (2008) N2O emissions and carbon sequestration in a nitrogen-fertilized Douglas-fir stand. J Geophys Res Biogeosci. doi:10.1029/2008JG000764

  • Johnson LC, Damman AWH (1991) Species-controlled Sphagnum decay on a south Swedish raised bog. Oikos 61:234–242

    Article  Google Scholar 

  • Joosten H, Clarke D (2002) Wise use of mires and peatlands: background principles including a framework for decision-making. International Mire Conservation Group and International Peat Society, Saarijärvi

    Google Scholar 

  • Kauppi PE, Rautiainen A, Korhonen KT et al (2010) Changing stock of biomass carbon in a boreal forest over 93 years. For Ecol Manage 259:1239–1244

    Article  Google Scholar 

  • Kelly CA, Rudd JWM, Bodaly RA (1997) Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir. Environ Sci Technol 31:1334–1345

    Article  CAS  Google Scholar 

  • Keltikangas M, Laine J, Puttonen P et al (1986) Peatlands drained for forestry during 1930–1978: results from field surveys of drained areas. Acta For Fenn 193:1–94

    Google Scholar 

  • Kirschbaum M, Fischlin A (1996) Climate change impacts on forests. Climate Change 1995: Impacts; Adaptations and mitigation of Climate Change. In: Watson R, Zinyowera MC, Moss RH (eds) Scientific-Technical Analysis. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel of Climate Change. Cambridge University Press, Cambridge pp 95–129

    Google Scholar 

  • Kolari P, Kulmala L, Pumpanen J et al (2009) CO2 exchange and component CO2 fluxes of a boreal Scots pine forest. Boreal Environ Res 14:761–783

    CAS  Google Scholar 

  • Kurz WA, Apps MJ, Webb TM et al (1993) The carbon budget of the Canadian forest sector: phase I. Information report NOR-X-326. Northwest Region, Northern Forestry Center, Forestry Canada, Edmonton, Alberta, Canada

    Google Scholar 

  • Kurz WA, Apps MJ, Beukema SJ et al (1995) 20th century carbon budget of Canadian forests. Tellus 47B:170–177

    CAS  Google Scholar 

  • Kurz WA, Stinson G, Rampley GJ et al (2008) Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc Natl Acad Sci USA 105:1551

    Article  PubMed  CAS  Google Scholar 

  • Lagergren F, Lindroth A, Dellwik ED et al (2008) Biophysical controls on CO2 fluxes of three northern forests based on long-term eddy covariance data. Tellus 60B:143–152

    CAS  Google Scholar 

  • Laiho R, Vasander H, Penttilä T et al (2003) Dynamics of plant-mediated organic matter and nutrient cycling following long-term water-level drawdown in boreal peatlands. Glob Biogeochem Cycles. doi:10.1029/2002GB002015

  • Laine J, Vasander H, Laiho R (1995a) Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. J Appl Ecol 32:785–802

    Article  Google Scholar 

  • Laine J, Vasander H, Sallantaus T (1995b) Ecological effects of peatland drainage for forestry. Environ Rev 3:286–303

    Article  CAS  Google Scholar 

  • Laine J, Laiho R, Minkkinen K et al (2006) Forestry and boreal peatlands. In: Kelman WR, Vitt DH (eds) Boreal Peatland Ecosystem. Ecological Studies, vol 188. Springer, Berlin

    Google Scholar 

  • Larsen JA (1980) The boreal ecosystem. Academic, New York

    Google Scholar 

  • Lindroth A, Klemedtsson L, Grelle A et al (2008) Measurement of net ecosystem exchange, productivity and respiration in three spruce forests in Sweden shows unexpectedly large soil carbon losses. Biogeochem 89:43–60

    Article  Google Scholar 

  • Litvak M, Miller S, Wofsy SC et al (2003) Effect of stand age on whole ecosystem CO2 exchange in the Canadian boreal forest. J Geophys Res 108(D3):8225

    Article  Google Scholar 

  • Lloyd J, Shibistova O, Zolotoukhine D et al (2002) Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest. Tellus 54B:590–610

    CAS  Google Scholar 

  • Lohila A, Minkkinen K, Aurela M et al (2010) Forestation of boreal peatlands: impacts of changing albedo and greenhouse gas fluxes on radiative forcing. J Geophys Res. doi:10.1029/2010JG001327

  • Lohila A, Minkkinen K, Aurela M et al (2011) Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink. Biogeosci 8:3203–3218

    Article  CAS  Google Scholar 

  • Long JN, Dean TJ, Roberts SD (2004) Linkages between silviculture and ecology: examination of several important conceptual models. For Ecol Manage 200(1–3):249–261. doi:10.1016/j.foreco.2004.07.005.

    Article  CAS  Google Scholar 

  • Magill AH, Aber JD, Currie WS et al (2004) Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. For Ecol Manage 196:7–28

    Article  Google Scholar 

  • Mäkilä M (1997) Holocene lateral expansion, peat growth, and carbon accumulation on Haukkasuo, a raised bog in southeastern Finland. Boreas 26:1–14

    Article  Google Scholar 

  • Martikainen PJ, Nykänen H, Crill P, Silvola J (1993) Effect of water on nitrous oxide fluxes from northern peatland. Nature 366:51–53

    Google Scholar 

  • Milyukova IM, Kolle O, Varlagin AV et al (2002) Carbon balance of a southern taiga spruce stand in European Russia. Tellus 54B:429–442

    CAS  Google Scholar 

  • Minkkinen K, Penttilä T, Laine J (2007) Tree stand volume as a scalar for methane fluxes in forestry-drained peatlands in Finland. Boreal Environ Res 12:127–132

    CAS  Google Scholar 

  • Moore TR, Roulet NT, Waddingtot JM (1998) Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands. Clim Change 40:229–245

    Article  CAS  Google Scholar 

  • Moss AR, Jouany J-P, Newbold J (2005) Methane production by ruminants: its contribution to global warming. Ann Zootech 49:231–240

    Article  Google Scholar 

  • Munn RE, Maarouf AR (1997) Atmospheric issues in Canada. Sci Total Environ 203:1–14

    Article  CAS  Google Scholar 

  • Murphy PJ, Mudd JP, Stocks BJ (2000) Historical fire records in the North American boreal forest. Ecological studies, ISSU 138. Springer, New York

    Google Scholar 

  • National Wetlands Working Group (1988) Wetlands of Canada. Ecological land classification series, no. 24. Sustainable Development Branch, Environment Canada/Polyscience Publications Inc, Ottawa/Montreal

    Google Scholar 

  • Neilson RP (1993) Vegetation redistribution: a possible biosphere source of CO2 during climatic change. Water Air Soil Pollut 70:659–673

    Article  Google Scholar 

  • Nilsson S (ed) (1996) Boreal forests – the role of research congress report. In: Caring for the forest: research in a changing world. Congress report, vol II. Proceedings of the 1995 IUFRO XX World Congress, 1995 Aug 6–12, Tampere, Finland, pp 399–409

    Google Scholar 

  • Norris CE, Quideau SA, Bhatti JS et al (2009) Soil carbon stabilization in jack pine stands along the Boreal Forest Transect Case Study. Glob Change Biol 17:480–494

    Article  Google Scholar 

  • Ollinger SV, Richardson AD, Martin ME et al (2008) Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: functional relations and potential climate feedbacks. Proc Natl Acad Sci USA 55:19336–19341

    Article  Google Scholar 

  • Paavilainen E, Päivänen J (1995) Peatland forestry – ecology and principles. Springer, New York

    Google Scholar 

  • Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science. doi:10.1126/science.1201609

  • Perez-Garcia J, Lippke B, Commick J, Manriquez C (2006) An assessment of carbon pools, storage, and wood products market substitution using life-cycle analysis results. Wood and Fiber Sci 37:140–148

    Google Scholar 

  • Preston CM, Bhatti JS, Flanagan LB et al (2006) Stocks, chemistry, and sensitivity to climate change of dead organic matter along the Canadian Boreal Forest Transect Case Study. Clim Change 74:223–251

    Article  CAS  Google Scholar 

  • Price DT, McKenney DW, Joyce LA et al (2011) High-resolution interpolation of climate scenarios for Canada derived from general circulation model simulations. Information report NOR-X-421. Natural Resources Canada, Canada Forest Service, North Forestry Centre, Edmonton, AB

    Google Scholar 

  • Ramankutty N, Foley JA (1999) Estimating historical changes in land cover: North American croplands from 1850 to 1992. Global Ecol Biogeogr 8:381–394

    Article  Google Scholar 

  • Reader RJ, Stewart JM (1972) The relationship between net primary production and accumulation for a peatland in southeastern Manitoba. Ecology 53:1024–1037

    Article  Google Scholar 

  • Regina K, Nykänen H, Silvola J et al (1996) Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity. Biogeochemistry 35:401–418

    Article  CAS  Google Scholar 

  • Sanderson MG, Hemming DL, Betts RA (2011) Regional temperature and precipitation changes under high-end (≥4°C) global warming. Philos Trans R Soc A 369:85–98

    Article  CAS  Google Scholar 

  • Schroeder W, Kort J (2001) Temperate agroforestry: adaptive and mitigative roles in a changing physical and socio-economic climate. In: Proceedings of the 7th Biennial conference on agroforestry in North America, 12–15 Aug 2001, Regina SK

    Google Scholar 

  • Sellers PJ, Hall FG, Kelly RD et al (1997) BOREAS in 1997: scientific results, experiment overview and future directions. J Geophys Res 102:28731–28770

    Article  Google Scholar 

  • Shvidenko AZ, Nilsson S, Roshkov V et al (1996) Carbon budget of the Russian boreal forests: a systems analysis approach to uncertainty. In: Apps M, Price D (eds) Forest ecosystems, forest management and the global carbon cycle. Springer, New York, pp 145–162

    Google Scholar 

  • Shvidenko AZ, Schepashchenko DG, Vaganov EA et al (2007) Net primary production of forest ecosystems of Russia: a new estimate. Doklady Earth Sci 421A:1009–1012

    Google Scholar 

  • Smith TM, Cramer W, Dixon RK et al (1993) The global terrestrial carbon cycle. Water Air Soil Pollut 70:19–37

    Article  CAS  Google Scholar 

  • Stocks BJ, Mason JA, Todd JB et al (2002) Large forest fires in Canada, 1959–1997. J Geophys Res 10:1029

    Google Scholar 

  • Tarnocai C (2006) The effect of climate change on carbon in Canadian peatlands. Glob Planet Change 53:222–232

    Article  Google Scholar 

  • Theede AD (2007) Biometric and eddy-covariance estimates of ecosystem carbon storage at two boreal forest stands in Saskatchewan: 1994–2004. MSc thesis, University of Saskatchewan

    Google Scholar 

  • Thormann MN, Szumigalski AR, Bayley SE (1999) Aboveground peat and carbon accumulation potentials along a bog-fen-marsh gradient in southern boreal Alberta, Canada. Wetlands 19:305–317

    Article  Google Scholar 

  • Turetsky MR, St. Louis V (2006) Disturbance in boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Ecological study series. Springer, Heidelberg

    Google Scholar 

  • Turetsky MR, Weider RK, Halsey LA et al (2002) Current disturbance and the diminishing peatland carbon sink. Geophys Res Lett 29:1526

    Article  Google Scholar 

  • Turner DPJK, Winjum TP, Kolchugina TS et al (1998) Estimating the terrestrial C carbon pools of the former Soviet Union, the conterminous United States and Brazil. Climate Res 9:183–196

    Article  Google Scholar 

  • Updegraff K, Pastor J, Bridgham SD et al (1995) Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecol Appl 5:151–163

    Article  Google Scholar 

  • van Kooten GC (2000) Economic dynamics of tree planting for carbon uptake on marginal agricultural lands. Can J Agric Econ 48:51–65

    Article  Google Scholar 

  • Vitt DH (2006) Peatlands: Canada’s Past and Future Carbon Legacy. In: Bhatti JS, Lal R, Apps MJ, Price MA (eds) Climate change and managed ecosystems. CRC Press, Taylor & Francis Group, Boca Raton, Florida, USA, pp 201–216

    Article  Google Scholar 

  • Vitt DH, Halsey LA, Zoltai SC (2000) The changing landscape of Canada’s western boreal forest: the current dynamics of permafrost. Can J For Res 30:283–287

    Google Scholar 

  • Vitt DH, Wieder RK (2006) Boreal peatland ecosystems: our carbon heritage. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems, ecological study series. Springer, Berlin

    Google Scholar 

  • Volney WJA, Fleming RA (2000) Climate change and impacts of boreal forest insects. Agric Ecosyst Environ 82:283–294

    Article  Google Scholar 

  • Weber MG, Stocks BJ (1998) Forest fires and sustainability in the boreal forests of Canada. Ambio 27:545–550

    Google Scholar 

  • White A, Cannel MGR, Friend AD (2000) The high latitude terrestrial carbon sink: a model analysis. Glob Change Biol 6:227–245

    Article  Google Scholar 

  • Yavitt JB, Williams CJ, Wieder RK (1997) Production of methane and carbon dioxide in peatland ecosystems across North America: effects of temperature, aeration, and organic chemistry of peat. Geomicrobiol J 14:299–316

    Article  CAS  Google Scholar 

  • Zha T, Barr AG, Black TA et al (2009) Carbon sequestration in boreal jack pine stands following harvesting. Glob Change Biol 15:1475–1487

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Rattan Lal and Klaus Lorenz for their critical review of an earlier version of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagtar Bhatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bhatti, J., Jassal, R., Black, T.A. (2012). Decarbonization of the Atmosphere: Role of the Boreal Forest Under Changing Climate. In: Lal, R., Lorenz, K., Hüttl, R., Schneider, B., von Braun, J. (eds) Recarbonization of the Biosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4159-1_10

Download citation

Publish with us

Policies and ethics