Skip to main content

Cell Cycle Control by Ataxia Telangiectasia Mutated Protein Through Regulating Retinoblastoma Protein Phosphorylation

  • Chapter
  • First Online:
Tumors of the Central Nervous System, Volume 8

Abstract

The ability of cells to maintain their genomic integrity is essential to the prevention of cancer development. Double-strand breaks (DSBs), the most harmful type of lesion to DNA, are sensed by ataxia-telangiectasia mutated (ATM) protein in association with the MRE11-RAD50-NBS1 complex. The ATM kinase, which is mutated in ataxia-telangiectasia disorder, is a crucial guardian of genomic integrity. Its activation in response to DSBs orchestrates the DNA damage response (DDR) by phosphorylating a plethora of substrates that modulate processes such as DNA repair and cell cycle checkpoints. In this chapter we focus on the molecular mechanisms involved in ATM activation and cell cycle control in response to DSBs and, specifically, on the cross-talk between ATM and retinoblastoma protein (pRb) phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alao JP, Sunnerhagen P (2009) The ATM and ATR inhibitors CGK733 and caffeine suppress cyclin D1 levels and inhibit cell proliferation. Radiat Oncol 4:51

    Article  PubMed  Google Scholar 

  • Berkovich E, Ginsberg D (2003) ATM is a target for positive regulation by E2F-1. Oncogene 22(2):161–167

    Article  PubMed  CAS  Google Scholar 

  • Bosco G (2010) Cell cycle: retinoblastoma, a trip organizer. Nature 466(7310):1051–1052

    Article  PubMed  CAS  Google Scholar 

  • Cai Z, Chehab NH, Pavletich NP (2009) Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase. Mol Cell 35(6):818–829

    Article  PubMed  CAS  Google Scholar 

  • Cann KL, Hicks GG (2007) Regulation of the cellular DNA double-strand break response. Biochem Cell Biol 85(6):663–674

    Article  PubMed  CAS  Google Scholar 

  • Czornak K, Chughtai S, Chrzanowska KH (2008) Mystery of DNA repair: the role of the MRN complex and ATM kinase in DNA damage repair. J Appl Genet 49(4):383–396

    Article  PubMed  Google Scholar 

  • Eguchi T, Takaki T, Itadani H, Kotani H (2007) RB silencing compromises the DNA damage-induced G2/M checkpoint and causes deregulated expression of the ECT2 oncogene. Oncogene 26(4):509–520

    Article  PubMed  CAS  Google Scholar 

  • Guo R, Chen J, Zhu F, Biswas AK, Berton TR, Mitchell DL, Johnson DG (2010a) E2F1 localizes to sites of UV-induced DNA damage to enhance nucleotide excision repair. J Biol Chem 285(25):19308–19315

    Article  PubMed  CAS  Google Scholar 

  • Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT (2010b) ATM activation by oxidative stress. Science 330(6003):517–521

    Article  PubMed  CAS  Google Scholar 

  • Iijima K, Ohara M, Seki R, Tauchi H (2008) Dancing on damaged chromatin: functions of ATM and the RAD50/MRE11/NBS1 complex in cellular responses to DNA damage. J Radiat Res (Tokyo) 49(5):451–464

    Article  CAS  Google Scholar 

  • Inoue Y, Kitagawa M, Taya Y (2007) Phosphorylation of pRB at Ser612 by Chk1/2 leads to a complex between pRB and E2F-1 after DNA damage. EMBO J 26(8):2083–2093

    Article  PubMed  CAS  Google Scholar 

  • Kaelin WG Jr (1999) Functions of the retinoblastoma protein. Bioessays 21(11):950–958

    Article  PubMed  Google Scholar 

  • Kanu N, Behrens A (2008) ATMINistrating ATM signalling: regulation of ATM by ATMIN. Cell Cycle 7(22):3483–3486

    Article  PubMed  CAS  Google Scholar 

  • Kinner A, Wu W, Staudt C, Iliakis G (2008) Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36(17):5678–5694

    Article  PubMed  CAS  Google Scholar 

  • Knudsen ES, Wang JY (2010) Targeting the RB-pathway in cancer therapy. Clin Cancer Res 16(4):1094–1099

    Article  PubMed  CAS  Google Scholar 

  • Lapenna S, Giordano A (2009) Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov 8(7):547–566

    Article  PubMed  CAS  Google Scholar 

  • Lavin MF (2008) Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 9(10):759–769

    Article  PubMed  CAS  Google Scholar 

  • Lavin MF, Kozlov S (2007) ATM activation and DNA damage response. Cell Cycle 6(8):931–942

    Article  PubMed  CAS  Google Scholar 

  • Lempiäinen H, Halazonetis TD (2009) Emerging common themes in regulation of PIKKs and P13Ks. EMBO J 28(20):3067–3073

    Article  PubMed  Google Scholar 

  • Lin WC, Lin FT, Nevins JR (2001) Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev 15(14):1833–1844

    PubMed  CAS  Google Scholar 

  • Liu K, Lin FT, Ruppert JM, Lin WC (2003) Regulation of E2F1 by BRCT domain-containing protein TopBP1. Mol Cell Biol 23(9):3287–3304

    Article  PubMed  CAS  Google Scholar 

  • Lou Z, Chen J (2005) Mammalian DNA damage response pathway. Adv Exp Med Biol 570:425–455

    Article  PubMed  CAS  Google Scholar 

  • Lovejoy CA, Cortez D (2009) Common mechanisms of PIKK regulation. DNA Repair (Amst) 8(9):1004–1008

    Article  CAS  Google Scholar 

  • Meek DW (2009) Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer 9(10):714–723

    PubMed  CAS  Google Scholar 

  • Mohammad DH, Yaffe MB (2009) 14-3-3 proteins, FHA domains and BRCT domains in the DNA damage response. DNA Repair (Amst) 8(9):1009–1017

    Article  CAS  Google Scholar 

  • Mukherjee S, Manna S, Pal D, Mukherjee P, Panda CK (2010) Sequential loss of cell cycle checkpoint control contributes to malignant transformation of murine embryonic fibroblasts induced by 20-methylcholanthrene. J Cell Physiol 224(1):49–58

    PubMed  CAS  Google Scholar 

  • Pediconi N, Ianari A, Costanzo A, Belloni L, Gallo R, Cimino L, Porcellini A, Screpanti I, Balsano C, Alesse E, Gulino A, Levrero M (2003) Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat Cell Biol 5(6):552–558

    Article  PubMed  CAS  Google Scholar 

  • Petersen P, Chou DM, You Z, Hunter T, Walter JC, Walter G (2006) Protein phosphatase 2A antagonizes ATM and ATR in a Cdk2- and Cdc7-independent DNA damage checkpoint. Mol Cell Biol 26(5):1997–2011

    Article  PubMed  CAS  Google Scholar 

  • Pizarro JG, Folch J, Vazquez DlT, Verdaguer E, Junyent F, Jordan J, Pallas M, Camins A (2009) Oxidative stress-induced DNA damage and cell cycle regulation in B65 dopaminergic cell line. Free Radic Res 43(10):985–994

    Article  PubMed  CAS  Google Scholar 

  • Pizarro JG, Folch J, de la Torre AV, Junyent F, Verdaguer E, Jordan J, Pallas M, Camins A (2010) ATM is involved in cell-cycle control through the regulation of retinoblastoma protein phosphorylation. J Cell Biochem 110(1):210–218

    PubMed  CAS  Google Scholar 

  • Rogoff HA, Kowalik TF (2004) Life, death and E2F: linking proliferation control and DNA damage signaling via E2F1. Cell Cycle 3(7):845–846

    Article  PubMed  CAS  Google Scholar 

  • Saddic LA, West LE, Aslanian A, Yates JR III, Rubin SM, Gozani O, Sage J (2010) Methylation of the retinoblastoma tumor suppressor by SMYD2. J Biol Chem 285(48):37733–37740

    Article  PubMed  CAS  Google Scholar 

  • Tian B, Yang Q, Mao Z (2009) Phosphorylation of ATM by Cdk5 meditates DNA damage signalling and regulates neural death. Nat Cell Biol 11(2):211–218

    Article  PubMed  CAS  Google Scholar 

  • van Harn T, Foijer F, van Vugt M, Banerjee R, Yang F, Oostra A, Joenje H, te Riele H (2010) Loss of Rb proteins causes genomic instability in the absence of mitogenic signaling. Genes Dev 24(13):1377–1388

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Spanish Ministry of Education and Science SAF-2009-13093, BFU2010-19119 and BFU2010-22149 the Fondo de Investigación Sanitaria and the Instituto de Salud Carlos III (PI080400 and PS09/01789) (FEDER FOUNDS). We thank the Catalan Government (Generalitat de Catalunya) for supporting the research groups (2009/SGR00853). 610RT0405 from Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED). We thank the University of Barcelona Language Services for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier G. Pizarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pizarro, J.G. et al. (2012). Cell Cycle Control by Ataxia Telangiectasia Mutated Protein Through Regulating Retinoblastoma Protein Phosphorylation. In: Hayat, M. (eds) Tumors of the Central Nervous System, Volume 8. Tumors of the Central Nervous System, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4213-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4213-0_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4212-3

  • Online ISBN: 978-94-007-4213-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics