Skip to main content

Midkine Gene Transfer in Brain Infarction

  • Chapter
  • First Online:
Midkine: From Embryogenesis to Pathogenesis and Therapy

Abstract

Cerebrovascular disease is the leading cause of death and disability in Japan and most Western countries. Gene transfer techniques may be applicable to the treatment of serious types of stroke, since several experimental studies have revealed the usefulness of gene therapy in the prevention of vasospasm after subarachnoid hemorrhage, reduction of infarct size and improvement of neuronal functions. Midkine is reported to have anti-apoptotic effects, and the gene transfer of midkine to the ischemic brain may provide neuroprotective effects. Furthermore, chemotactic effects of midkine could be utilized for the neurogenesis and functional recovery. We describe the novel possibility of the stroke treatment using midkine gene transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verma IM, Somia N (1997) Gene therapy promises, problems and prospects. Nature 389:239–242

    Article  PubMed  CAS  Google Scholar 

  2. Isner JM (2002) Myocardial gene therapy. Nature 415:234–239

    Article  PubMed  CAS  Google Scholar 

  3. Heistad DD, Faraci FM (1996) Gene therapy for cerebral vascular disease. Stroke 27:1688–1693

    Article  PubMed  CAS  Google Scholar 

  4. Isner JM, Vale PR, Symes JF et al (2001) Assessment of risks associated with cardiovascular gene therapy in human subjects. Circ Res 89:389–400

    Article  PubMed  CAS  Google Scholar 

  5. Schneider MD, French BA (1993) The advent of adenovirus. Gene therapy for cardiovascular disease. Circulation 88:1937–1942

    Article  PubMed  CAS  Google Scholar 

  6. Lin H, Parmacek MS, Morle G et al (1990) Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation 82:2217–2221

    Article  PubMed  CAS  Google Scholar 

  7. Shen F, Su H, Fan Y et al (2006) Adeno-associated viral-vector-mediated hypoxia-inducible vascular endothelial growth factor gene expression attenuates ischemic brain injury after focal cerebral ischemia in mice. Stroke 37:2601–2606

    Article  PubMed  CAS  Google Scholar 

  8. Hacein-Bey-Abina S, Hauer J, Lim A et al (2010) Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 363:355–364

    Article  PubMed  CAS  Google Scholar 

  9. Okano S, Yonemitsu Y, Shirabe K et al (2011) Provision of continuous maturation signaling to Dendritic cells by RIG-I-stimulating cytosolic RNA synthesis of Sendai virus. J Immunol 186:1828–1839

    Article  PubMed  CAS  Google Scholar 

  10. Nabel EG, Plautz G, Nabel GJ (1990) Site-specific gene expression in vivo by direct gene transfer into the arterial wall. Science 249:1285–1288

    Article  PubMed  CAS  Google Scholar 

  11. Toyoda K, Ooboshi H, Chu Y et al (1998) Cationic molecules enhance adenovirus-mediated gene transfer to the carotid artery. Stroke 29:2181–2187

    Article  PubMed  CAS  Google Scholar 

  12. Rios CD, Ooboshi H, Piegors D et al (1995) Adenovirus-mediated gene transfer to normal and atherosclerotic arteries. A novel approach. Arterioscler Thromb Vasc Biol 15:2241–2245

    Article  PubMed  CAS  Google Scholar 

  13. Ooboshi H, Welsh MJ, Rios CD et al (1995) Adenovirus-mediated gene transfer in vivo to cerebral blood vessels and perivascular tissue. Circ Res 77:7–13

    Article  PubMed  CAS  Google Scholar 

  14. Christenson SD, Lake KD, Ooboshi H et al (1998) Adenovirus-mediated gene transfer to cerebral blood vessels and perivascular tissue in mice. Stroke 29:1411–1416

    Article  PubMed  CAS  Google Scholar 

  15. Muhonen MG, Ooboshi H, Welsh MJ et al (1997) Gene transfer to cerebral blood vessels after subarachnoid hemorrhage. Stroke 28:822–828

    Article  PubMed  CAS  Google Scholar 

  16. Toyoda K, Faraci FM, Watanabe Y et al (2000) Gene transfer of calcitonin gene-related peptide prevents vasoconstriction after subarachnoid hemorrhage. Circ Res 87:818–824

    Article  PubMed  CAS  Google Scholar 

  17. Watanabe Y, Chu Y, Andresen JJ et al (2003) Gene transfer of extracellular superoxide dismutase reduces cerebral vasospasm after subarachnoid hemorrhage. Stroke 34:434–440

    Article  PubMed  CAS  Google Scholar 

  18. Hossmann KA (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36:557–565

    Article  PubMed  CAS  Google Scholar 

  19. Xie Y, Mies G, Hossmann KA (1989) Ischemic threshold of brain protein synthesis after unilateral carotid artery occlusion in gerbils. Stroke 20:620–626

    Article  PubMed  CAS  Google Scholar 

  20. Ooboshi H, Ibayashi S, Takada J et al (2001) Adenovirus-mediated gene transfer to ischemic brain. Ischemic flow threshold for transgene expression. Stroke 32:1043–1047

    Article  PubMed  CAS  Google Scholar 

  21. Takada J, Ooboshi H, Yao H et al (2003) Adenovirus-mediated gene transfer to ischemic brain is augmented in aged rats. Exp Gerontol 38:423–429

    Article  PubMed  CAS  Google Scholar 

  22. Yenari MA, Fink SL, Sun GH et al (1998) Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Ann Neurol 44:584–591

    Article  PubMed  CAS  Google Scholar 

  23. Ooboshi H, Chu Y, Rios CD et al (1997) Altered vascular function following adenovirus-mediated overexpression of endothelial nitric oxide synthase. Am J Physiol 273:H265–H270

    PubMed  CAS  Google Scholar 

  24. Ooboshi H, Toyoda K, Faraci FM et al (1998) Improvement of relaxation in an atherosclerotic artery by gene transfer of endothelial nitric oxide synthase. Arterioscler Thromb Vasc Biol 18:1752–1758

    Article  PubMed  CAS  Google Scholar 

  25. Ooboshi H, Rios CD, Heistad DD (1997) Novel methods for adenovirus-mediated gene transfer to blood vessels in vivo. Mol Cell Biochem 172:37–46

    Article  PubMed  CAS  Google Scholar 

  26. Kumai Y, Ooboshi H, Kitazono T et al (2003) Brain ischemia augments exo-focal transgene expression of adenovirus-mediated gene transfer to ependyma in hypertensive rats. Exp Neurol 184:904–911

    Article  PubMed  CAS  Google Scholar 

  27. Kadomatsu K, Tomomura M, Muramatsu T (1988) cDNA cloning and sequencing of a new gene intensely expressed in early differentiation stages of embryonal carcinoma cells and in mid-gestation period of mouse embryogenesis. Biochem Biophys Res Commun 151:1312–1318

    Article  PubMed  CAS  Google Scholar 

  28. Kikuchi S, Muramatsu H, Muramatsu T et al (1993) Midkine, a novel neurotrophic factor, promotes survival of mesencephalic neurons in culture. Neurosci Lett 160:9–12

    Article  PubMed  CAS  Google Scholar 

  29. Yoshida Y, Goto M, Tsutsui J et al (1995) Midkine is present in the early stage of cerebral infarct. Brain Res Dev Brain Res 85:25–30

    Article  PubMed  CAS  Google Scholar 

  30. Owada K, Sanjo N, Kobayashi T et al (1999) Midkine inhibits caspase-dependent apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase in cultured neurons. J Neurochem 73:2084–2092

    PubMed  CAS  Google Scholar 

  31. Takada J, Ooboshi H, Ago T et al (2005) Postischemic gene transfer of midkine, a neurotrophic factor, protects against focal brain ischemia. Gene Ther 12:487–493

    Article  PubMed  CAS  Google Scholar 

  32. Sumida A, Horiba M, Ishiguro H et al (2010) Midkine gene transfer after myocardial infarction in rats prevents remodelling and ameliorates cardiac dysfunction. Cardiovasc Res 86:113–121

    Article  PubMed  CAS  Google Scholar 

  33. Barone FC, Feuerstein GZ (1999) Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab 19:819–834

    Article  PubMed  CAS  Google Scholar 

  34. Kumai Y, Ooboshi H, Takada J et al (2004) Anti-monocyte chemoattractant protein-1 gene therapy protects against focal brain ischemia in hypertensive rats. J Cereb Blood Flow Metab 24:1359–1368

    Article  PubMed  CAS  Google Scholar 

  35. Yilmaz G, Arumugam TV, Stokes KY et al (2006) Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 113:2105–2112

    Article  PubMed  Google Scholar 

  36. Shichita T, Sugiyama Y, Ooboshi H et al (2009) Pivotal role of cerebral interleukin-17-producing γδT cells in the late phase of ischemic brain injury. Nat Med 15:946–950

    Article  PubMed  CAS  Google Scholar 

  37. Liesz A, Suri-Payer E, Veltkamp C et al (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15:192–199

    Article  PubMed  CAS  Google Scholar 

  38. Ooboshi H, Ibayashi S, Shichita T et al (2005) Postischemic gene transfer of interleukin-10 protects against both focal and global brain ischemia. Circulation 111:913–919

    Article  PubMed  CAS  Google Scholar 

  39. del Zoppo GJ (2006) Stroke and neurovascular protection. N Engl J Med 354:553–555

    Article  PubMed  Google Scholar 

  40. Su EJ, Fredriksson L, Geyer M et al (2008) Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat Med 14:731–737

    Article  PubMed  CAS  Google Scholar 

  41. Kumai Y, Ooboshi H, Ibayashi S et al (2007) Postischemic gene transfer of soluble Flt-1 protects against brain ischemia with marked attenuation of blood-brain barrier permeability. J Cereb Blood Flow Metab 27:1152–1160

    Article  PubMed  CAS  Google Scholar 

  42. Temple S (2001) The development of neural stem cells. Nature 414:112–117

    Article  PubMed  CAS  Google Scholar 

  43. Nakatomi H, Kuriu T, Okabe S et al (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110:429–441

    Article  PubMed  CAS  Google Scholar 

  44. Arvidsson A, Collin T, Kirik D et al (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    Article  PubMed  CAS  Google Scholar 

  45. Sugiura S, Kitagawa K, Tanaka S et al (2005) Adenovirus-mediated gene transfer of heparin-binding epidermal growth factor-like growth factor enhances neurogenesis and angiogenesis after focal cerebral ischemia in rats. Stroke 36:859–864

    Article  PubMed  CAS  Google Scholar 

  46. Matsuzawa M, Muramatsu T, Yamamori T (1999) Novel neuronal effects of midkine on embryonic cerebellar neurons examined using a defined culture system. Cell Mol Neurobiol 19:209–221

    PubMed  CAS  Google Scholar 

  47. Horiba M, Kadomatsu K, Nakamura E et al (2000) Neointima formation in a restenosis model is suppressed in midkine-deficient mice. J Clin Invest 105:489–495

    Article  PubMed  CAS  Google Scholar 

  48. Choudhuri R, Zhang HT, Donnini S et al (1997) An angiogenic role for the neurokines midkine and pleiotrophin in tumorigenesis. Cancer Res 57:1814–1819

    PubMed  CAS  Google Scholar 

  49. Ishikawa E, Ooboshi H, Kumai Y et al (2009) Midkine gene transfer protects against focal brain ischemia and augments neurogenesis. J Neurol Sci 285:78–84

    Article  PubMed  CAS  Google Scholar 

  50. Biebl M, Cooper CM, Winkler J et al (2000) Analysis of neurogenesis and programmed cell death reveals a selfrenewing capacity in the adult rat brain. Neurosci Lett 291:17–20

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the University of Iowa Gene Transfer Vector Core, especially Beverly L. Davidson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Ooboshi .

Editor information

Editors and Affiliations

Additional information

Funding: This work was supported by the Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology (S0801084, 23591262), Tokyo, Japan.

Conflict of interest: None.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ooboshi, H., Ishikawa, E., Takada, J., Shichita, T., Kumai, Y. (2012). Midkine Gene Transfer in Brain Infarction. In: Ergüven, M., Muramatsu, T., Bilir, A. (eds) Midkine: From Embryogenesis to Pathogenesis and Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4234-5_13

Download citation

Publish with us

Policies and ethics