Skip to main content

Communication and Differentiation in the Development of Yeast Colonies

  • Chapter
  • First Online:
Biocommunication of Fungi
  • 2390 Accesses

Abstract

In addition to complex natural biofilms, colonies of different yeast species represent multicellular communities that possess a specific internal organization. Cells within colonies are able to differentiate to specialized cell types that perform specific functions at specific positions. Primitive cell-tissues are thus created, the formation of which is dependent on cell–cell interactions and the transmission of signals within the colony. In addition, colonies can behave as independent multicellular entities, producing signals that enable them to mutually synchronize their development when it occurs within the same territory. As a consequence, colonies synchronously adapt to changing environments and they gain a greater capacity to exploit remnant nutrients. In this review, we summarize the current knowledge concerning cell specialization and signaling within different kinds of yeast colonies and the known aspects of communication among individual colonies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JM, Soll DR (1987) Unique phenotype of opaque cells in the white-opaque transition of Candida albicans. J Bacteriol 169:5579–5588

    PubMed  CAS  Google Scholar 

  • Cap M, Vachova L, Palkova Z (2009) Yeast colony survival depends on metabolic adaptation and cell differentiation rather than on stress defense. J Biol Chem 284:32572–32581

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Fink GR (2006) Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 20:1150–1161

    Article  PubMed  CAS  Google Scholar 

  • Dickinson JR (1996) ‘Fusel’ alcohols induce hyphal-like extensions and pseudohyphal formation in yeasts. Microbiology 142:1391–1397

    Article  PubMed  CAS  Google Scholar 

  • Gori K, Mortensen HD, Arneborg N, Jespersen L (2007) Ammonia production and its possible role as a mediator of communication for Debaryomyces hansenii and other cheese-relevant yeast species. J Dairy Sci 90:5032–5041

    Article  PubMed  CAS  Google Scholar 

  • Granek JA, Magwene PM (2010) Environmental and genetic determinants of colony morphology in yeast. PLoS Genet 6:e1000823

    Article  PubMed  Google Scholar 

  • Hall RA, De Sordi L, Maccallum DM, Topal H, Eaton R, Bloor JW, Robinson GK, Levin LR, Buck J, Wang Y, Gow NA, Steegborn C, Muhlschlegel FA (2010) CO(2) acts as a signalling molecule in populations of the fungal pathogen Candida albicans. PLoS Pathog 6:e1001193

    Article  PubMed  Google Scholar 

  • Hnisz D, Schwarzmuller T, Kuchler K (2009) Transcriptional loops meet chromatin: a dual-layer network controls white-opaque switching in Candida albicans. Mol Microbiol 74:1–15

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Srikantha T, Sahni N, Yi S, Soll DR (2009) CO(2) regulates white-to-opaque switching in Candida albicans. Curr Biol 19:330–334

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Yi S, Sahni N, Daniels KJ, Srikantha T, Soll DR (2010) N-acetylglucosamine induces white to opaque switching, a mating prerequisite in Candida albicans. PLoS Pathog 6:e1000806

    Article  PubMed  Google Scholar 

  • Kruppa M (2009) Quorum sensing and Candida albicans. Mycoses 52:1–10

    Article  PubMed  CAS  Google Scholar 

  • Kuthan M, Devaux F, Janderova B, Slaninova I, Jacq C, Palkova Z (2003) Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol Microbiol 47:745–754

    Article  PubMed  CAS  Google Scholar 

  • Lachke SA, Lockhart SR, Daniels KJ, Soll DR (2003) Skin facilitates Candida albicans mating. Infect Immun 71:4970–4976

    Article  PubMed  CAS  Google Scholar 

  • Leadsham JE, Miller K, Ayscough KR, Colombo S, Martegani E, Sudbery P, Gourlay CW (2009) Whi2p links nutritional sensing to actin-dependent Ras-cAMP-PKA regulation and apoptosis in yeast. J Cell Sci 122:706–715

    Article  PubMed  CAS  Google Scholar 

  • Lindegren CC, Hamilton E (1944) Autolysis and sporulation in the yeast colony. Bot Gaz 105:316–321

    Article  Google Scholar 

  • Meunier JR, Choder M (1999) Saccharomyces cerevisiae colony growth and ageing: biphasic growth accompanied by changes in gene expression. Yeast 15:1159–1169

    Article  PubMed  CAS  Google Scholar 

  • Minarikova L, Kuthan M, Ricicova M, Forstova J, Palkova Z (2001) Differentiated gene expression in cells within yeast colonies. Exp Cell Res 271:296–304

    Article  PubMed  CAS  Google Scholar 

  • Palkova Z, Forstova J (2000) Yeast colonies synchronise their growth and development. J Cell Sci 113:1923–1928

    PubMed  CAS  Google Scholar 

  • Palkova Z, Vachova L (2003) Ammonia signaling in yeast colony formation. Int Rev Cytol 225:229–272

    Article  PubMed  CAS  Google Scholar 

  • Palkova Z, Janderova B, Gabriel J, Zikanova B, Pospisek M, Forstova J (1997) Ammonia mediates communication between yeast colonies. Nature 390:532–536

    Article  PubMed  CAS  Google Scholar 

  • Palkova Z, Devaux F, Ricicova M, Minarikova L, Le Crom S, Jacq C (2002) Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell 13:3901–3914

    Article  PubMed  CAS  Google Scholar 

  • Piccirillo S, Honigberg SM (2010) Sporulation patterning and invasive growth in wild and domesticated yeast colonies. Res Microbiol 161:390–398

    Article  PubMed  Google Scholar 

  • Piccirillo S, White MG, Murphy JC, Law DJ, Honigberg SM (2010) The Rim101p/PacC pathway and alkaline pH regulate pattern formation in yeast colonies. Genetics 184:707–716

    Article  PubMed  CAS  Google Scholar 

  • Pisova M (1934) Anatomy of yeast colonies. Rozpravy II Tridy Ceske Akad 154:1–13 (in Czech)

    Google Scholar 

  • Reynolds TB, Jansen A, Peng X, Fink GR (2008) Mat formation in Saccharomyces cerevisiae requires nutrient and pH gradients. Eukaryot Cell 7:122–130

    Article  PubMed  CAS  Google Scholar 

  • Robertson LS, Fink GR (1998) The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci USA 95:13783–13787

    Article  PubMed  CAS  Google Scholar 

  • Scherz R, Shinder V, Engelberg D (2001) Anatomical analysis of Saccharomyces cerevisiae stalk-like structures reveals spatial organization and cell specialization. J Bacteriol 183:5402–5413

    Article  PubMed  CAS  Google Scholar 

  • Slutsky B, Buffo J, Soll DR (1985) High-frequency switching of colony morphology in Candida albicans. Science 230:666–669

    Article  PubMed  CAS  Google Scholar 

  • Slutsky B, Staebell M, Anderson J, Risen L, Pfaller M, Soll DR (1987) “White-opaque transition”: a second high-frequency switching system in Candida albicans. J Bacteriol 169:189–197

    PubMed  CAS  Google Scholar 

  • Soll DR (2004) Mating-type locus homozygosis, phenotypic switching and mating: a unique sequence of dependencies in Candida albicans. Bioessays 26:10–20

    Article  PubMed  CAS  Google Scholar 

  • Stovicek V, Vachova L, Kuthan M, Palkova Z (2010) General factors important for the formation of structured biofilm-like yeast colonies. Fungal Genet Biol 47:1012–1022

    Article  CAS  Google Scholar 

  • Suzuki T, Miyamae Y, Ishida I (1991) Variation of colony morphology and chromosomal rearrangement in Candida tropicalis pK233. J Gen Microbiol 137:161–167

    Article  PubMed  CAS  Google Scholar 

  • Vachova L, Palkova Z (2005) Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia. J Cell Biol 169:711–717

    Article  PubMed  CAS  Google Scholar 

  • Vachova L, Devaux F, Kucerova H, Ricicova M, Jacq C, Palkova Z (2004) Sok2p transcription factor is involved in adaptive program relevant for long term survival of Saccharomyces cerevisiae colonies. J Biol Chem 279:37973–37981

    Article  PubMed  CAS  Google Scholar 

  • Vachova L, Chernyavskiy O, Strachotova D, Bianchini P, Burdikova Z, Fercikova I, Kubinova L, Palkova Z (2009a) Architecture of developing multicellular yeast colony: spatio-temporal expression of Ato1p ammonium exporter. Environ Microbiol 11:1866–1877

    Article  PubMed  CAS  Google Scholar 

  • Vachova L, Kucerova H, Devaux F, Ulehlova M, Palkova Z (2009b) Metabolic diversification of cells during the development of yeast colonies. Environ Microbiol 11:494–504

    Article  PubMed  CAS  Google Scholar 

  • Vachova L, Stovicek V, Hlavacek O, Chernyavskiy O, Stepanek L, Kubinova L, Palkova Z (2011) Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies. J Cell Biol 194:679–687

    Article  PubMed  CAS  Google Scholar 

  • Vopalenska I, Stovicek V, Janderova B, Vachova L, Palkova Z (2010) Role of distinct dimorphic transitions in territory colonizing and formation of yeast colony architecture. Environ Microbiol 12:264–277

    Article  PubMed  CAS  Google Scholar 

  • Zordan RE, Miller MG, Galgoczy DJ, Tuch BB, Johnson AD (2007) Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans. PLoS Biol 5:e256

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by grants from the Grant Agency of the Czech Republic 204/08/0718 and from the Ministry of Education LC531, Research Concepts MSM0021620858 and AV0Z50200510.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdena Palková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Palková, Z., Váchová, L. (2012). Communication and Differentiation in the Development of Yeast Colonies. In: Witzany, G. (eds) Biocommunication of Fungi. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4264-2_9

Download citation

Publish with us

Policies and ethics