Skip to main content

ER Stress and UPR Through Dysregulated ER Ca2+ Homeostasis and Signaling

  • Chapter
  • First Online:
Endoplasmic Reticulum Stress in Health and Disease

Abstract

The endoplasmic reticulum (ER) has two important biological functions: protein folding and storing intracellular Ca2+. Importantly, adequate ER Ca2+-store filling is critical for proper protein folding. In many occasions, ER stress is tightly linked to disruption of ER Ca2+ homeostasis, causing the activation of an integrated signaling pathway, the unfolded protein response (UPR). In this book chapter, we will review the ER as a dynamic intracellular Ca2+-storage organelle in a constant state of Ca2+flux that is in close proximity to the mitochondria, thereby controlling cell survival, adaptive responses to stress and apoptosis. Next, we will discuss how altered [Ca2+]ER homeostasis leads to ER stress, and how ER stress and their sensors alters Ca2+ flux. Recent studies provided novel insights in the molecular mechanisms underlying these processes, including a dynamic regulation of ER Ca2+-uptake and –release mechanisms by ER chaperones and the main controller of the ER-stress sensors, GRP78/BiP. Furthermore, recently identified Ca2+-transport systems also seem to target ER-stress proteins. Overall, it is clear that altered Ca2+ signaling and UPR during ER stress are closely related through dynamic physical interactions between their key players.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BI1:

Bax inhibitor-1

BiP:

Immunoglobulin heavy chain binding protein

CaMKII:

Calmodulin-dependent protein kinase II

cyt c:

Cytochrome c

eIF2α:

Eukaryotic initiation factor 2α

ER:

Endoplasmic reticulum

ERAD:

ER-associated degradation

ERO1α:

ER oxidoreductin 1α

FAD:

Familial Alzheimers disease

GRP:

Glucose-regulated protein

HO-1:

Heme oxygenase 1

IMM:

Inner mitochondrial membrane

IP3 :

Inositol 1,4,5-trisphosphate

IP3Rs:

Inositol 1,4,5-trisphosphate receptors

JNK:

C-Jun N-terminal kinase

MAMs:

mitochondria associated membranes

MCU:

Mitochondrial Ca2+ uniporter

mTOR:

Mammalian target of rapamycin

NPR:

NADPH-P450 reductase

OMM:

Outer mitochondrial membrane

P450:

Cytochrome P450

PDI:

Protein disulfide isomerase

PLC:

Phospholipase C

PML:

Promyelocytic leukemia

PTP:

Permeability transition pore

ROS:

Reactive oxygen species

RyRs:

Ryanodine receptors

SERCA:

Sarco- and endoplasmic reticulum Ca2+ ATPase

SERCA1 T:

Truncated sarco- and endoplasmic reticulum Ca2+ ATPase 1

SPCA1:

Secretory pathway Ca2+ ATPase 1

STIM:

Stromal interaction molecule

TRP:

Transient receptor potential

TRPC6:

Canonical transient receptor potential-6

UPR:

Unfolded protein response

VDAC:

Voltage dependant anion channel

References

  1. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7): 517–529

    Article  PubMed  CAS  Google Scholar 

  2. Harr MW, Distelhorst CW (2010) Apoptosis and autophagy: decoding calcium signals that mediate life or death. Cold Spring Harb Perspect Biol. 2(10):a005579

    Article  PubMed  CAS  Google Scholar 

  3. Decuypere JP, Monaco G, Bultynck G, Missiaen L, Smedt H De, Parys JB (2011) The IP3 receptor-mitochondria connection in apoptosis and autophagy. Biochim Biophys Acta 1813(5):1003–1013

    Article  PubMed  CAS  Google Scholar 

  4. Mekahli D, Bultynck G, Parys JB, Smedt H De, Missiaen L (2011) Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol 3(6):a004

    Article  CAS  Google Scholar 

  5. Berridge MJ (2002) The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32(5–6):235–249

    Article  PubMed  CAS  Google Scholar 

  6. Sammels E, Parys JB, Missiaen L, Smedt H De, Bultynck G (2010) Intracellular Ca2+ storage in health and disease: a dynamic equilibrium. Cell Calcium 47(4):297–314

    Article  PubMed  CAS  Google Scholar 

  7. Prins D, Michalak M (2011) Organellar calcium buffers. Cold Spring Harb Perspect Biol 3(3)

    Google Scholar 

  8. Meldolesi J, Pozzan T (1998) The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci 23(1):10–14

    Article  PubMed  CAS  Google Scholar 

  9. Coe H, Michalak M (2009) Calcium binding chaperones of the endoplasmic reticulum. Gen Physiol Biophys 28 Spec No Focus:F96-F103

    Google Scholar 

  10. Beard NA, Laver DR, Dulhunty AF (2004) Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Prog Biophys Mol Biol 85(1):33–69

    Article  PubMed  CAS  Google Scholar 

  11. Papp E, Nardai G, Soti C, Csermely, P (2003) Molecular chaperones, stress proteins and redox homeostasis. Biofactors 17(1–4):249–257

    Article  PubMed  CAS  Google Scholar 

  12. Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M (2009) Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 417(3):651–66

    Article  PubMed  CAS  Google Scholar 

  13. Nakamura K, Zuppini A, Arnaudeau S, Lynch J, Ahsan I, Krause R, Papp S, Smedt H De, Parys JB, Muller-Esterl W, Lew DP, Krause KH, Demaurex N, Opas M, Michalak M (2001) Functional specialization of calreticulin domains. J Cell Biol 154(5):961–972

    Article  PubMed  CAS  Google Scholar 

  14. Leach MR, Cohen-Doyle MF, Thomas DY, Williams DB (2002) Localization of the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. J Biol Chem 277(33):29686–29697

    Article  PubMed  CAS  Google Scholar 

  15. Kapoor M, Ellgaard L, Gopalakrishnapai J, Schirra C, Gemma E, Oscarson S, Helenius A, Surolia A (2004) Mutational analysis provides molecular insight into the carbohydrate-binding region of calreticulin: pivotal roles of tyrosine-109 and aspartate-135 in carbohydrate recognition. Biochemistry 43(1):97–106

    Article  PubMed  CAS  Google Scholar 

  16. Ellgaard L, Riek R, Herrmann T, Guntert P, Braun D, Helenius A, Wuthrich K (2001) NMR structure of the calreticulin P-domain. Proc Natl Acad Sci U S A 98(6):3133–3138

    Article  PubMed  CAS  Google Scholar 

  17. Ellgaard L, Riek R, Braun D, Herrmann T, Helenius A, Wuthrich K (2001) Three-dimensional structure topology of the calreticulin P-domain based on NMR assignment. FEBS Lett 488(1–2):69–73

    Article  PubMed  CAS  Google Scholar 

  18. Vassilakos A, Michalak M, Lehrman MA, Williams DB (1998) Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry 37(10):3480–3490

    Article  PubMed  CAS  Google Scholar 

  19. Frickel EM, Riek R, Jelesarov I, Helenius A, Wuthrich K, Ellgaard L (2002)TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc Natl Acad Sci U S A 99(4):1954–1959

    Article  PubMed  CAS  Google Scholar 

  20. Baksh S, Michalak M (1991) Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains. J Biol Chem 266(32):21458–21465.

    PubMed  CAS  Google Scholar 

  21. Lievremont JP, Rizzuto R, Hendershot L, Meldolesi J (1997) BiP, a major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of Ca2+. J Biol Chem 272(49):30873–30879

    Article  PubMed  CAS  Google Scholar 

  22. Argon Y, Simen BB (1999) GRP94, an ER chaperone with protein and peptide binding properties. Semin Cell Dev Biol 10(5):495–505

    Article  PubMed  CAS  Google Scholar 

  23. Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89(4):1341–1378

    Article  PubMed  CAS  Google Scholar 

  24. Hovnanian A (2007) SERCA pumps and human diseases. Subcell Biochem 45:337–363

    Article  PubMed  CAS  Google Scholar 

  25. Vandecaetsbeek I, Vangheluwe P, Raeymaekers L, Wuytack F, Vanoevelen J (2011) The Ca2+ pumps of the endoplasmic reticulum and Golgi apparatus. Cold Spring Harb Perspect Biol 3(5)

    Google Scholar 

  26. Periasamy M, Kalyanasundaram A (2007) SERCA pump isoforms: their role in calcium transport and disease. Muscle Nerve 35(4):430–442

    Article  PubMed  CAS  Google Scholar 

  27. Traaseth NJ, Ha KN, Verardi R, Shi L, Buffy JJ, Masterson LR, Veglia G (2008) Structural and dynamic basis of phospholamban and sarcolipin inhibition of Ca2+-ATPase. Biochemistry 47(1):3–13

    Article  PubMed  CAS  Google Scholar 

  28. Michelangeli F, East JM (2011) A diversity of SERCA Ca2+ pump inhibitors. Biochem Soc Trans 39(3):789–797

    PubMed  CAS  Google Scholar 

  29. Kass GE, Orrenius S (1999) Calcium signaling and cytotoxicity. Environ Health Perspect 107(Suppl 1):25–35

    Article  PubMed  CAS  Google Scholar 

  30. Taylor CW, Dale P (2011) Intracellular Ca2+ channels – A growing community. Mol Cell Endocrinol.

    Google Scholar 

  31. Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87(2):593–658

    Article  PubMed  CAS  Google Scholar 

  32. Mikoshiba K (2007) IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. J Neurochem 102(5):1426–1446

    Article  PubMed  CAS  Google Scholar 

  33. Mikoshiba K (2007) The IP3 receptor/Ca2+ channel and its cellular function. Biochem Soc Symp (74):9–22

    Google Scholar 

  34. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL (2010) Ryanodine receptors: structure, expression, molecular details, and function. In: Calcium release. Cold Spring Harb Perspect Bio 2(11):a003996

    Article  CAS  Google Scholar 

  35. Capes EM, Loaiza R, Valdivia HH (2011) Ryanodine receptors. Skelet Muscle 1(1):18

    Article  PubMed  CAS  Google Scholar 

  36. Verkhratsky A (2002) The endoplasmic reticulum and neuronal calcium signalling. Cell Calcium 32(5–6):393–404

    Article  PubMed  CAS  Google Scholar 

  37. Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341(6239):197–205

    Article  PubMed  CAS  Google Scholar 

  38. Taylor CW, Tovey SC (2010) IP3 receptors: toward understanding their activation. Cold Spring Harb Perspect Biol 2(12):a004010

    Article  PubMed  CAS  Google Scholar 

  39. Bezprozvanny I, Watras J (1991) Ehrlich BE Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351(6329):751–754

    Article  PubMed  CAS  Google Scholar 

  40. Missiaen L, Smedt, H De, Droogmans G, Casteels R (1992) Ca2+ release induced by inositol 1,4,5-trisphosphate is a steady-state phenomenon controlled by luminal Ca2+ in permeabilized cells. Nature 357(6379):599–602

    Article  PubMed  CAS  Google Scholar 

  41. Missiaen L, Smedt, H De, Droogmans G, Casteels R (1992) Luminal Ca2+ controls the activation of the inositol 1,4,5-trisphosphate receptor by cytosolic Ca2+ . J Biol Chem 267(32):22961–22966

    PubMed  CAS  Google Scholar 

  42. Endo M (2009) Calcium-induced calcium release in skeletal muscle. Physiol Rev 89(4):1153–1176

    Article  PubMed  CAS  Google Scholar 

  43. Lehnart S, Marks AR (2007) Regulation of ryanodine receptors in the heart. Circ Res 101(8):746–749

    Article  PubMed  CAS  Google Scholar 

  44. Marx SO, Gaburjakova J, Gaburjakova M, Henrikson C, Ondrias K, Marks AR (2001) Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ Res 88(11):1151–1158

    Article  PubMed  CAS  Google Scholar 

  45. Mackrill JJ (1999) Protein-protein interactions in intracellular Ca2+ -release channel function. Biochem J 337 (Pt 3): 345–361

    Article  PubMed  CAS  Google Scholar 

  46. Zalk R, Lehnart SE, Marks AR (2007) Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem 76:367–385

    Article  PubMed  CAS  Google Scholar 

  47. Distelhorst CW, Bootman MD (2011) Bcl-2 interaction with the inositol 1,4,5-trisphosphate receptor: Role in Ca2+  signaling and disease. Cell Calcium 50(3):234–241

    Article  PubMed  CAS  Google Scholar 

  48. Decuypere JP, Bultynck G, Parys JB (2011) A dual role for Ca2+ in autophagy regulation. Cell Calcium 50(3):242–250

    Article  PubMed  CAS  Google Scholar 

  49. Rojas-Rivera D, Caballero B, Zamorano S, Lisbona F, Hetz C (2010) Alternative functions of the BCL-2 protein family at the endoplasmic reticulum. Adv Exp Med Biol 687:33–47

    Article  PubMed  CAS  Google Scholar 

  50. Pizzo P, Lissandron V, Capitanio P, Pozzan T (2011) Ca2+ signalling in the Golgi apparatus. Cell Calcium 50(2):184–192

    Article  PubMed  CAS  Google Scholar 

  51. Morgan AJ, Platt FM, Lloyd-Evans E, Galione A (2011) Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem J 439(3):349–374

    Article  PubMed  CAS  Google Scholar 

  52. Pinton P, Pozzan T, Rizzuto R (1998) The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J. 17(18):5298–5308

    Article  PubMed  CAS  Google Scholar 

  53. Missiaen L, Acker K Van, Baelen K Van, Raeymaekers L, Wuytack F, Parys JB, Smedt H De, Vanoevelen J, Dode L, Rizzuto R, Callewaert G (2004) Calcium release from the Golgi apparatus and the endoplasmic reticulum in HeLa cells stably expressing targeted aequorin to these compartments. Cell Calcium 36(6):479–487

    Article  PubMed  CAS  Google Scholar 

  54. Vanoevelen J, Raeymaekers L, Dode L, Parys JB, Smedt H De, Callewaert G, Wuytack F, Missiaen L (2005) Cytosolic Ca2+ signals depending on the functional state of the Golgi in HeLa cells. Cell Calcium 38(5):489–495

    Article  PubMed  CAS  Google Scholar 

  55. Pizzo P, Lissandron V, Pozzan T (2010) The trans-golgi compartment: A new distinct intracellular Ca store. Commun Integr Biol 3(5):462–464

    Article  PubMed  CAS  Google Scholar 

  56. Lissandron V, Podini P, Pizzo P, Pozzan T (2010) Unique characteristics of Ca2+ homeostasis of the trans-Golgi compartment. Proc Natl Acad Sci U S A 107(20):9198–9203

    Article  PubMed  CAS  Google Scholar 

  57. Zhu MX, Evans AM, Ma J, Parrington J, Galione A (2010) Two-pore channels for integrative Ca signaling. Commun Integr Biol 3(1):12–17

    Article  PubMed  Google Scholar 

  58. Zhu MX, Ma J, Parrington J, Galione A, Evans AM (2010) TPCs: Endolysosomal channels for Ca2+ mobilization from acidic organelles triggered by NAADP. FEBS Lett 584(10):1966–1974

    Article  PubMed  CAS  Google Scholar 

  59. Galione A (2011) NAADP receptors. Cold Spring Harb Perspect Biol. 3(1):a004036

    Google Scholar 

  60. Galione A, Parrington J, Funnell T (2011) Physiological roles of NAADP-mediated Ca2+ signaling. Sci China Life Sci 54(8):725–732

    Article  PubMed  CAS  Google Scholar 

  61. Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A (2009) Zhu MX NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459(7246):596–600

    Article  PubMed  CAS  Google Scholar 

  62. Galione A, Morgan AJ, Arredouani A, Davis LC, Rietdorf K, Ruas M, Parrington J (2010) NAADP as an intracellular messenger regulating lysosomal calcium-release channels. Biochem Soc Trans 38(6):1424–1431

    Article  PubMed  CAS  Google Scholar 

  63. Zhu MX, Ma J, Parrington J, Calcraft PJ, Galione A, Evans AM (2010) Calcium signaling via two-pore channels: local or global, that is the question. Am J Physiol Cell Physiol 298(3):C430–441

    Article  PubMed  CAS  Google Scholar 

  64. Galione A, Churchill GC (2002) Interactions between calcium release pathways: multiple messengers and multiple stores. Cell Calcium 32(5–6):343–354

    Article  PubMed  CAS  Google Scholar 

  65. Camello C, Lomax R, Petersen OH, Tepikin AV (2002) Calcium leak from intracellular stores–the enigma of calcium signalling. Cell Calcium 32(5–6):355–361

    Article  PubMed  CAS  Google Scholar 

  66. Coppenolle F Van, Vanden Abeele F, Slomianny C, Flourakis M, Hesketh J, Dewailly E, Prevarskaya N (2004) Ribosome-translocon complex mediates calcium leakage from endoplasmic reticulum stores. J Cell Sci 117(Pt 18):4135–4142

    Article  PubMed  CAS  Google Scholar 

  67. Ong HL, Liu X, Sharma A, Hegde RS, Ambudkar IS (2007) Intracellular Ca2+ release via the ER translocon activates store-operated calcium entry. Pflugers Arch 453(6):797–808

    Article  PubMed  CAS  Google Scholar 

  68. Flourakis M, Coppenolle F Van, Lehen’kyi V, Beck B, Skryma R, Prevarskaya N (2006) Passive calcium leak via translocon is a first step for iPLA2-pathway regulated store operated channels activation. FASEB J 20(8):1215–1217

    Article  PubMed  CAS  Google Scholar 

  69. Amer MS, Li J, O’Regan DJ, Steele DS, Porter KE, Sivaprasadarao A, Beech DJ (2009) Translocon closure to Ca2+ leak in proliferating vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 296(4):H910–916

    Article  PubMed  CAS  Google Scholar 

  70. Denis V, Cyert MS (2002) Internal Ca2+ release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue. J Cell Biol 156(1):29–34

    Article  PubMed  CAS  Google Scholar 

  71. Berbey C, Weiss N, Legrand C, Allard B (2009) Transient receptor potential canonical type 1 (TRPC1) operates as a sarcoplasmic reticulum calcium leak channel in skeletal muscle. J Biol Chem 284(52):36387–36394

    Article  PubMed  CAS  Google Scholar 

  72. Liu M, Liu MC, Magoulas C, Priestley JV, Willmott NJ (2003) Versatile regulation of cytosolic Ca2+ by vanilloid receptor I in rat dorsal root ganglion neurons. J Biol Chem 278(7):5462–5472

    Article  PubMed  CAS  Google Scholar 

  73. Turner H, Fleig A, Stokes A, Kinet JP, Penner R (2003) Discrimination of intracellular calcium store subcompartments using TRPV1 (transient receptor potential channel, vanilloid subfamily member 1) release channel activity. Biochem J 371(Pt 2):341–50

    Article  PubMed  CAS  Google Scholar 

  74. Gallego-Sandin S, Rodriguez-Garcia A, Alonso MT, Garcia-Sancho J (2009) The endoplasmic reticulum of dorsal root ganglion neurons contains functional TRPV1 channels. J Biol Chem 284(47):32591–3601

    Article  PubMed  CAS  Google Scholar 

  75. Castro J, Aromataris EC, Rychkov GY, Barritt GJ (2009) A small component of the endoplasmic reticulum is required for store-operated Ca2+ channel activation in liver cells: evidence from studies using TRPV1 and taurodeoxycholic acid. Biochem J 418(3):553–566

    Article  PubMed  CAS  Google Scholar 

  76. Bidaux G, Flourakis M, Thebault S, Zholos A, Beck B, Gkika D, Roudbaraki M, Bonnal JL, Mauroy B, Shuba Y, Skryma R, Prevarskaya N (2007) Prostate cell differentiation status determines transient receptor potential melastatin member 8 channel subcellular localization and function. J Clin Invest 117(6):1647–1657

    Article  PubMed  CAS  Google Scholar 

  77. Vassilev PM, Guo L, Chen XZ, Segal Y, Peng JB, Basora N, Babakhanlou H, Cruger G, Kanazirska M, Ye C, Brown EM, Hediger MA, Zhou J (2001) Polycystin-2 is a novel cation channel implicated in defective intracellular Ca2+  homeostasis in polycystic kidney disease. Biochem Biophys Res Commun 282(1):341–350

    Article  PubMed  CAS  Google Scholar 

  78. Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S (2002) Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 4(3):191–197

    Article  PubMed  CAS  Google Scholar 

  79. Koulen P, Duncan RS, Liu J, Cohen NE, Yannazzo JA, McClung N, Lockhart CL, Branden M, Buechner M (2005) Polycystin-2 accelerates Ca2+ release from intracellular stores in Caenorhabditis elegans. Cell Calcium 37(6):593–601

    Article  PubMed  CAS  Google Scholar 

  80. Giamarchi A, Padilla F, Crest M, Honore E, Delmas P (2006) TRPP2: Ca2+ -permeable cation channel and more. Cell Mol Biol (Noisy-le-grand) 52(8):105–114

    CAS  Google Scholar 

  81. Li Y, Wright JM, Qian F, Germino GG, Guggino WB (2005) Polycystin 2 interacts with type I inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling. J Biol Chem 280(50):41298–41306

    Article  PubMed  CAS  Google Scholar 

  82. Anyatonwu GI, Estrada M, Tian X, Somlo S, Ehrlich BE (2007) Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2. Proc Natl Acad Sci U S A 104(15):6454–6459

    Article  PubMed  CAS  Google Scholar 

  83. Sammels E, Devogelaere B, Mekahli D, Bultynck G, Missiaen L, Parys JB, Cai Y, Somlo S, Smedt H De (2010) Polycystin-2 activation by inositol 1,4,5-trisphosphate-induced Ca2+ release requires its direct association with the inositol 1,4,5-trisphosphate receptor in a signaling microdomain. J Biol Chem 285(24):18794–18805

    Article  PubMed  CAS  Google Scholar 

  84. Wegierski T, Steffl D, Kopp C, Tauber R, Buchholz B, Nitschke R, Kuehn EW, Walz G, Kottgen M (2009) TRPP2 channels regulate apoptosis through the Ca2+ concentration in the endoplasmic reticulum. EMBO J 28(5):490–499

    Article  PubMed  CAS  Google Scholar 

  85. Tu H, Nelson O, Bezprozvanny A, Wang Z, Lee SF, Hao YH, Serneels L, Strooper B De, Yu G, Bezprozvanny I (2006) Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer’s disease-linked mutations. Cell 126(5):981–993

    Article  PubMed  CAS  Google Scholar 

  86. Mattia F de, Gubser C, Dommelen MM van, Visch HJ, Distelmaier F, Postigo A, Luyten T, Parys JB, Smedt H de, Smith GL, Willems PH, Kuppeveld, FJ van (2009) Human Golgi antiapoptotic protein modulates intracellular calcium fluxes. Mol Biol Cell 20(16):3638–3645

    Article  PubMed  CAS  Google Scholar 

  87. Henke N, Lisak DA, Schneider L, Habicht J, Pergande M, Methner A (2011) The ancient cell death suppressor BAX inhibitor-1. Cell Calcium 50(3):251–60

    Article  PubMed  CAS  Google Scholar 

  88. Chae HJ, Kim HR, Xu C, Bailly-Maitre B, Krajewska M, Krajewski S, Banares S, Cui J, Digicaylioglu M, Ke N, Kitada S, Monosov E, Thomas M, Kress CL, Babendure JR, Tsien RY, Lipton SA, Reed JC (2004) BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress. Mol Cell 15(3):355–366

    Article  PubMed  CAS  Google Scholar 

  89. Kim HR, Lee GH, Ha KC, Ahn T, Moon JY, Lee BJ, Cho SG, Kim S, Seo YR, Shin YJ, Chae SW, Reed JC, Chae HJ (2008) Bax Inhibitor-1 Is a pH-dependent regulator of Ca2 + channel activity in the endoplasmic reticulum. J Biol Chem 283(23):15946–15955

    Article  PubMed  CAS  Google Scholar 

  90. Xu C, Xu W, Palmer AE, Reed JC (2008) BI-1 regulates endoplasmic reticulum Ca2+ homeostasis downstream of Bcl-2 family proteins. J Biol Chem 283(17):11477–11484

    Article  PubMed  CAS  Google Scholar 

  91. Ahn T, Yun CH, Chae HZ, Kim HR, Chae HJ (2009) Ca2+/H+ antiporter-like activity of human recombinant Bax inhibitor-1 reconstituted into liposomes. FEBS J 276(8):2285–2291

    Article  PubMed  CAS  Google Scholar 

  92. Bultynck G, Kiviluoto S, Henke N, Luyten T, Rybalchenko V, Ivanova H, Nuyts K, Deborggraeve W, Bezprozvanny I, Parys JB, Smedt H De, Missiaen L, Methner A (2012) The C-terminus of Bax Inhibitor-1 forms a Ca2+ -permeable channel pore. J Biol Chem 287(4):2544–2557

    Google Scholar 

  93. Vanden Abeele F, Bidaux G, Gordienko D, Beck B, Panchin YV, Baranova AV, Ivanov DV, Skryma R, Prevarskaya N (2006) Functional implications of calcium permeability of the channel formed by pannexin 1. J Cell Biol 174(4):535–546

    Article  PubMed  CAS  Google Scholar 

  94. D’Hondt C, Ponsaerts R, Smedt H De, Vinken M, Vuyst E De, Bock M De, Wang N, Rogiers V, Leybaert L, Himpens B, Bultynck G (2011) Pannexin channels in ATP release and beyond: an unexpected rendezvous at the endoplasmic reticulum. Cell Signal 23(2):305–316

    Article  PubMed  CAS  Google Scholar 

  95. Chami M, Gozuacik D, Lagorce D, Brini M, Falson P, Peaucellier G, Pinton P, Lecoeur H, Gougeon ML, Maire M le, Rizzuto R, Brechot C, Paterlini-Brechot P (2001) SERCA1 truncated proteins unable to pump calcium reduce the endoplasmic reticulum calcium concentration and induce apoptosis. J Cell Biol 153(6):1301–1313

    Article  PubMed  CAS  Google Scholar 

  96. Chami M, Oules B, Szabadkai G, Tacine R, Rizzuto R, Paterlini-Brechot P (2008) Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol Cell 32(5):641–651

    Article  PubMed  CAS  Google Scholar 

  97. Putney JW Jr (2005) Capacitative calcium entry: sensing the calcium stores. J Cell Biol 169(3):381–382

    Article  PubMed  CAS  Google Scholar 

  98. Putney JW Jr (2007) New molecular players in capacitative Ca2+ entry. J Cell Sci 120(Pt 12):1959–1965

    Article  PubMed  CAS  Google Scholar 

  99. Hogan PG, Lewis RS, Rao A (2010) Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28:491–533

    Article  PubMed  CAS  Google Scholar 

  100. Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131(7):1327–1339

    Article  PubMed  CAS  Google Scholar 

  101. Thomenius MJ, Distelhorst CW (2003) Bcl-2 on the endoplasmic reticulum: protecting the mitochondria from a distance. J Cell Sci 116(Pt 22):4493–4499

    Article  PubMed  CAS  Google Scholar 

  102. Giorgi C, Romagnoli A, Pinton P, Rizzuto R (2008) Ca2+ signaling, mitochondria and cell death. Curr Mol Med 8(2):119–130

    Article  PubMed  CAS  Google Scholar 

  103. Hayashi T, Rizzuto R, Hajnoczky G, Su TP (2009) MAM: more than just a housekeeper. Trends Cell Biol 19(2):81–88

    Article  PubMed  CAS  Google Scholar 

  104. Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, Stefani D De, Giorgi C, Leo S, Rimessi A, Siviero R, Zecchini E, Pinton P (2009) Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787(11):1342–1351

    Article  PubMed  CAS  Google Scholar 

  105. Contreras L, Drago I, Zampese E, Pozzan T (2010) Mitochondria: the calcium connection. Biochim Biophys Acta 1797(6–7):607–618

    PubMed  CAS  Google Scholar 

  106. Decuypere JP, Monaco G, Missiaen L, Smedt H De, Parys JB, Bultynck G (2011) IP3 Receptors, Mitochondria, and Ca Signaling: Implications for Aging. J Aging Res :920178

    Google Scholar 

  107. Sano R, Annunziata I, Patterson A, Moshiach S, Gomero E, Opferman J, Forte M, d’Azzo A (2009) GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca2+ -dependent mitochondrial apoptosis. Mol Cell 36(3):500–511

    Article  PubMed  CAS  Google Scholar 

  108. Missiaen L, Parys JB, Sienaert I, Maes K, Kunzelmann K, Takahashi M, Tanzawa K, Smedt H De (1998) Functional properties of the type-3 InsP3 receptor in 16HBE14o- bronchial mucosal cells. J Biol Chem 273(15):8983–8986

    Article  PubMed  CAS  Google Scholar 

  109. Miyakawa T, Maeda A, Yamazawa T, Hirose K, Kurosaki T, Iino M (1999) Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J 18(5):1303–1308

    Article  PubMed  CAS  Google Scholar 

  110. Mendes CC, Gomes DA, Thompson M, Souto NC, Goes TS, Goes AM, Rodrigues MA, Gomez MV, Nathanson MH, Leite MF (2005) The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria. J Biol Chem 280(49):40892–40900

    Article  PubMed  CAS  Google Scholar 

  111. Chen R, Valencia I, Zhong F, McColl KS, Roderick HL, Bootman MD, Berridge MJ, Conway SJ, Holmes AB, Mignery GA, Velez P, Distelhorst CW (2004) Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J Cell Biol 166(2):193–203

    Article  PubMed  CAS  Google Scholar 

  112. Zhong F, Davis MC, McColl KS, Distelhorst CW (2006) Bcl-2 differentially regulates Ca2+ signals according to the strength of T cell receptor activation. J Cell Biol 172(1):127–37

    Article  PubMed  CAS  Google Scholar 

  113. Rong YP, Aromolaran AS, Bultynck G, Zhong F, Li X, McColl K, Matsuyama S, Herlitze S, Roderick HL, Bootman MD, Mignery GA, Parys JB, Smedt H De, Distelhorst CW (2008) Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2’s inhibition of apoptotic calcium signals. Mol Cell 31(2):255–265

    Article  PubMed  CAS  Google Scholar 

  114. White C, Li C, Yang J, Petrenko NB, Madesh M, Thompson CB, Foskett JK (2005) The endoplasmic reticulum gateway to apoptosis by Bcl-XL modulation of the InsP3R. Nat Cell Biol 7(10):1021–1028

    Article  PubMed  CAS  Google Scholar 

  115. Li C, Wang X, Vais H, Thompson CB, Foskett JK, White C (2007) Apoptosis regulation by Bcl-x(L) modulation of mammalian inositol 1,4,5-trisphosphate receptor channel isoform gating. Proc Natl Acad Sci U S A 104(30):12565–12570

    Article  PubMed  CAS  Google Scholar 

  116. Rong YP, Bultynck G, Aromolaran AS, Zhong F, Parys JB, Smedt H De, Mignery GA, Roderick HL, Bootman MD, Distelhorst CW (2009) The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor. Proc Natl Acad Sci U S A 106(34):14397–14402

    Article  PubMed  CAS  Google Scholar 

  117. Foskett JK, Yang Y, Cheung KH, Vais H (2009) Bcl-xL Regulation of InsP3 Receptor Gating Mediated by Dual Ca2+ Release Channel BH3 Domains. Biophys J 96(3 Suppl 1):391a

    Article  Google Scholar 

  118. Eckenrode EF, Yang J, Velmurugan GV, Foskett JK, White C (2010) Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling. J Biol Chem. 285(18):13678–13684

    Article  PubMed  CAS  Google Scholar 

  119. Oakes SA, Scorrano L, Opferman JT, Bassik MC, Nishino M, Pozzan T, Korsmeyer SJ (2005) Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci U S A 102(1):105–110

    Article  PubMed  CAS  Google Scholar 

  120. Li C, Fox CJ, Master SR, Bindokas VP, Chodosh LA, Thompson CB (2002) Bcl-XL affects Ca2+  homeostasis by altering expression of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci U S A 99(15):9830–9835

    Article  PubMed  CAS  Google Scholar 

  121. Jones AW, Szabadkai G (2010) Ca2+ transfer from the ER to mitochondria: channeling cell death by a tumor suppressor. Dev Cell 19(6):789–790

    Article  PubMed  CAS  Google Scholar 

  122. Giorgi C, Ito K, Lin HK, Santangelo C, Wieckowski MR, Lebiedzinska M, Bononi A, Bonora M, Duszynski J, Bernardi R, Rizzuto R, Tacchetti C, Pinton P, Pandolfi PP (2010) PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330(6008):1247–1251

    Article  PubMed  CAS  Google Scholar 

  123. Pinton P, Giorgi C, Pandolfi PP (2011) The role of PML in the control of apoptotic cell fate: a new key player at ER-mitochondria sites. Cell Death Differ 18(9):1450–1456

    Article  PubMed  CAS  Google Scholar 

  124. Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH (2003) Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5(12):1051–1061

    Article  PubMed  CAS  Google Scholar 

  125. Boehning D, Patterson RL, Snyder SH (2004) Apoptosis and calcium: new roles for cytochrome c and inositol 1,4,5-trisphosphate. Cell Cycle 3(3):252–254

    Article  PubMed  CAS  Google Scholar 

  126. Boehning D, Rossum DB van, Patterson RL, Snyder SH (2005) A peptide inhibitor of cytochrome c/inositol 1,4,5-trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways. Proc Natl Acad Sci U S A 102(5):1466–1471

    Article  PubMed  CAS  Google Scholar 

  127. Monaco G, Decrock E, Akl H, Ponsaerts R, Vervliet T, Luyten T, Maeyer M De, Missiaen L, Distelhorst CW, Smedt H De, Parys JB, Leybaert L, Bultynck G (2011) Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-Xl. Cell DeathDiffer 19(2):295–309

    Google Scholar 

  128. Assefa Z, Bultynck G, Szlufcik K, Nadif Kasri N, Vermassen E, Goris J, Missiaen L, Callewaert G, Parys JB, Smedt H De (2004) Caspase-3-induced truncation of type 1 inositol trisphosphate receptor accelerates apoptotic cell death and induces inositol trisphosphate-independent calcium release during apoptosis. J Biol Chem 279(41):43227–43236

    Google Scholar 

  129. Verbert L, Lee B, Kocks SL, Assefa Z, Parys JB, Missiaen L, Callewaert G, Fissore RA, Smedt H De (2008) Bultynck, G., Caspase-3-truncated type 1 inositol 1,4,5-trisphosphate receptor enhances intracellular Ca2+ leak and disturbs Ca2+ signalling. Biol Cell 100(1):39–49

    Article  PubMed  CAS  Google Scholar 

  130. Pearce MM, Wang Y, Kelley GG, Wojcikiewicz RJ (2007) SPFH2 mediates the endoplasmic reticulum-associated degradation of inositol 1,4,5-trisphosphate receptors and other substrates in mammalian cells. J Biol Chem 282(28):20104–20115

    Article  PubMed  CAS  Google Scholar 

  131. Wojcikiewicz RJ, Pearce MM, Sliter DA, Wang Y (2009) When worlds collide: IP3 receptors and the ERAD pathway. Cell Calcium 46(3):147–153

    Article  PubMed  CAS  Google Scholar 

  132. Wang Y, Pearce MM, Sliter DA, Olzmann JA, Christianson JC, Kopito RR, Boeckmann S, Gagen C, Leichner GS, Roitelman J, Wojcikiewicz RJ (2009) SPFH1 and SPFH2 mediate the ubiquitination and degradation of inositol 1,4,5-trisphosphate receptors in muscarinic receptor-expressing HeLa cells. Biochim Biophys Acta 1793(11):1710–1718

    Article  PubMed  CAS  Google Scholar 

  133. Pearce MM, Wormer DB, Wilkens S, Wojcikiewicz RJ (2009) An endoplasmic reticulum (ER) membrane complex composed of SPFH1 and SPFH2 mediates the ER-associated degradation of inositol 1,4,5-trisphosphate receptors. J Biol Chem 284(16):10433–10445

    Article  PubMed  CAS  Google Scholar 

  134. Zhong F, Harr MW, Bultynck G, Monaco G, Parys JB, Smedt H De, Rong YP, Molitoris JK, Lam M, Ryder C, Matsuyama S, Distelhorst, CW (2011) Induction of Ca2+ -driven apoptosis in chronic lymphocytic leukemia cells by peptide-mediated disruption of Bcl-2-IP3 receptor interaction. Blood 117(10):2924–2934

    Article  PubMed  CAS  Google Scholar 

  135. Szado T, Vanderheyden V, Parys JB, Smedt H De, Rietdorf K, Kotelevets L, Chastre E, Khan F, Landegren U, Soderberg O, Bootman MD, Roderick HL (2008) Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proc Natl Acad Sci U S A 105(7):2427–2432

    Article  PubMed  CAS  Google Scholar 

  136. Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115(10):2656–2664

    Article  PubMed  CAS  Google Scholar 

  137. Rizzuto R, Bastianutto C, Brini M, Murgia M, Pozzan T (1994) Mitochondrial Ca2+ homeostasis in intact cells. J Cell Biol 126(5):1183–1194

    Article  PubMed  CAS  Google Scholar 

  138. Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci U S A 96(24):13807–13812

    Article  PubMed  CAS  Google Scholar 

  139. Campanella M, Pinton P, Rizzuto R (2004) Mitochondrial Ca2+ homeostasis in health and disease. Biol Res 37(4):653–660

    Article  PubMed  Google Scholar 

  140. Cardenas C, Miller RA, Smith I, Bui T, Molgo J, Muller M, Vais H, Cheung KH, Yang J, Parker I, Thompson CB, Birnbaum MJ, Hallows KR, Foskett JK (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142(2):270–283

    Article  PubMed  CAS  Google Scholar 

  141. Joseph SK, Hajnoczky G (2007) IP3 receptors in cell survival and apoptosis: Ca2+  release and beyond. Apoptosis 12(5):951–968

    Article  PubMed  CAS  Google Scholar 

  142. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R (2008) Calcium and apoptosis: ER-mitochondria Ca2+transfer in the control of apoptosis. Oncogene 27(50):6407–6418

    Article  PubMed  CAS  Google Scholar 

  143. Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, Petersen OH, Sutton R, Watson AJ, Gerasimenko OV (2009) Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem 284(31):20796–20803

    Article  PubMed  CAS  Google Scholar 

  144. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science. 300 (5616):135–139

    Google Scholar 

  145. Oakes SA, Opferman JT, Pozzan T, Korsmeyer SJ, Scorrano L (2003) Regulation of endoplasmic reticulum Ca2+ dynamics by proapoptotic BCL-2 family members. Biochem Pharmacol 66(8):1335–1340

    Article  PubMed  CAS  Google Scholar 

  146. Oakes SA, Lin SS, Bassik MC (2006) The control of endoplasmic reticulum-initiated apoptosis by the BCL-2 family of proteins. Curr Mol Med 6(1):99–109

    Article  PubMed  CAS  Google Scholar 

  147. Gaut JR, Hendershot LM (1993) The modification and assembly of proteins in the endoplasmic reticulum. Curr Opin Cell Biol 5(4):589–595

    Article  PubMed  CAS  Google Scholar 

  148. Ma Y, Hendershot LM (2004) ER chaperone functions during normal and stress conditions. J Chem Neuroanat 28(1–2):51–65

    Article  PubMed  CAS  Google Scholar 

  149. Yoshida I, Monji A, Tashiro K, Nakamura K, Inoue R, Kanba S (2006) Depletion of intracellular Ca2+ store itself may be a major factor in thapsigargin-induced ER stress and apoptosis in PC12 cells. Neurochem Int 48(8):696–702

    Article  PubMed  CAS  Google Scholar 

  150. Moore CE, Omikorede O, Gomez E, Willars GB, Herbert TP (2011) PERK activation at low glucose concentration is mediated by SERCA pump inhibition and confers preemptive cytoprotection to pancreatic beta-cells. Mol Endocrinol 25(2):315–326

    Article  PubMed  CAS  Google Scholar 

  151. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  PubMed  CAS  Google Scholar 

  152. Schroder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569(1–2):29–63

    PubMed  Google Scholar 

  153. Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18(6):716–731

    Article  PubMed  CAS  Google Scholar 

  154. Kim MJ, Byun JY, Yun CH, Park IC, Lee KH, Lee SJ (2008) c-Src-p38 mitogen-activated protein kinase signaling is required for Akt activation in response to ionizing radiation. Mol Cancer Res 6(12):1872–1880

    Article  PubMed  CAS  Google Scholar 

  155. Kimata Y, Kohno K (2011) Endoplasmic reticulum stress-sensing mechanisms in yeast and mammalian cells. Curr Opin Cell Biol 23(2):135–142

    Article  PubMed  CAS  Google Scholar 

  156. Liu H, Bowes RC 3rd, Water B van de, Sillence C, Nagelkerke JF, Stevens JL (1997) Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells. J Biol Chem 272(35):21751–21759

    Article  PubMed  CAS  Google Scholar 

  157. Kudo T, Kanemoto S, Hara H, Morimoto N, Morihara T, Kimura R, Tabira T, Imaizumi K, Takeda M (2008) A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ 15(2):364–375

    Article  PubMed  CAS  Google Scholar 

  158. Wiseman RL, Zhang Y, Lee KP, Harding HP, Haynes CM, Price J, Sicheri F, Ron D (2010) Flavonol activation defines an unanticipated ligand-binding site in the kinase-RNase domain of IRE1. Mol Cell 38(2):291–304

    Article  PubMed  CAS  Google Scholar 

  159. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 131(3):596–610

    Article  PubMed  CAS  Google Scholar 

  160. Higo T, Hamada K, Hisatsune C, Nukina N, Hashikawa T, Hattori M, Nakamura T, Mikoshiba K (2010) Mechanism of ER stress-induced brain damage by IP3 receptor. Neuron 68(5):865–878

    Article  PubMed  CAS  Google Scholar 

  161. Timmins JM, Ozcan L, Seimon TA, Li G, Malagelada C, Backs J, Backs T, Bassel-Duby R, Olson EN, Anderson ME, Tabas I (2009) Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J Clin Invest 119(10):2925–2941

    Article  PubMed  CAS  Google Scholar 

  162. Ozcan L, Tabas I (2010) Pivotal role of calcium/calmodulin-dependent protein kinase II in ER stress-induced apoptosis. Cell Cycle 9(2):223–224

    Article  PubMed  CAS  Google Scholar 

  163. Dejeans N, Tajeddine N, Beck R, Verrax J, Taper H, Gailly P, Calderon PB (2010) Endoplasmic reticulum calcium release potentiates the ER stress and cell death caused by an oxidative stress in MCF-7 cells. Biochem Pharmacol 79(9):1221–1230

    Article  PubMed  CAS  Google Scholar 

  164. Ruiz A, Matute C, Alberdi E (2009) Endoplasmic reticulum Ca2+  release through ryanodine and IP3 receptors contributes to neuronal excitotoxicity. Cell Calcium 46(4):273–281

    Article  PubMed  CAS  Google Scholar 

  165. Bonilla M, Nastase KK, Cunningham KW (2002) Essential role of calcineurin in response to endoplasmic reticulum stress. EMBO J 21(10):2343–2353

    Article  PubMed  CAS  Google Scholar 

  166. Hoyer-Hansen M, Jaattela M (2007) Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 14(9):1576–1582

    Article  PubMed  CAS  Google Scholar 

  167. Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman RJ, Kominami E, Momoi T (2007) ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14(2):230–239

    Article  PubMed  CAS  Google Scholar 

  168. Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, Mathiasen IS, Jaattela M (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25(2):193–205

    Article  PubMed  CAS  Google Scholar 

  169. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM. Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331(6016):456–461

    Article  PubMed  CAS  Google Scholar 

  170. Mao K, Klionsky DJ (2011) AMPK activates autophagy by phosphorylating ULK1. Circ Res 108(7):787–788

    Article  PubMed  CAS  Google Scholar 

  171. Zhao M, Klionsky DJ (2011) AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metab 13(2):119–120

    Article  PubMed  CAS  Google Scholar 

  172. Grotemeier A, Alers S, Pfisterer SG, Paasch F, Daubrawa M, Dieterle A, Viollet B, Wesselborg S, Proikas-Cezanne T, Stork B (2010) AMPK-independent induction of autophagy by cytosolic Ca2+ increase. Cell Signal 22(6):914–925

    Article  PubMed  CAS  Google Scholar 

  173. Momoi T (2006) Conformational diseases and ER stress-mediated cell death: apoptotic cell death and autophagic cell death. Curr Mol Med 6(1):111–118

    Article  PubMed  CAS  Google Scholar 

  174. Torres M, Castillo K, Armisen R, Stutzin A, Soto C, Hetz C (2010) Prion protein misfolding affects calcium homeostasis and sensitizes cells to endoplasmic reticulum stress. PLoS ONE 5(12):e15658

    Article  PubMed  CAS  Google Scholar 

  175. Ding WX, Ni HM, Gao W, Hou YF, Melan MA, Chen X, Stolz DB, Shao ZM, Yin XM (2007) Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem 282(7):4702–4710

    Article  PubMed  CAS  Google Scholar 

  176. Li G, Mongillo M, Chin KT, Harding H, Ron D, Marks AR, Tabas I (2009) Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J Cell Biol 186(6):783–792

    Article  PubMed  CAS  Google Scholar 

  177. Higo T, Hattori M, Nakamura T, Natsume T, Michikawa T, Mikoshiba K (2005) Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell 120(1):85–98

    Article  PubMed  CAS  Google Scholar 

  178. Huang G, Yao J, Zeng W, Mizuno Y, Kamm KE, Stull JT, Harding HP, Ron D, Muallem S (2006) ER stress disrupts Ca2+ -signaling complexes and Ca2+ regulation in secretory and muscle cells from PERK-knockout mice. J Cell Sci 119(Pt 1):153–161

    Article  PubMed  CAS  Google Scholar 

  179. Brostrom MA, Prostko CR, Gmitter D, Brostrom CO (1995) Independent signaling of grp78 gene transcription and phosphorylation of eukaryotic initiator factor 2 alpha by the stressed endoplasmic reticulum. J Biol Chem 270(8):4127–4132

    Article  PubMed  CAS  Google Scholar 

  180. Yu Z, Luo H, Fu W, Mattson MP (1999) The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp Neurol 155(2):302–314

    Article  PubMed  CAS  Google Scholar 

  181. Bollo M, Paredes RM, Holstein D, Zheleznova N, Camacho P, Lechleiter JD (2010) Calcineurin interacts with PERK and dephosphorylates calnexin to relieve ER stress in mammals and frogs. PLoS ONE 5(8):e11925

    Google Scholar 

  182. Bastianutto C, Clementi E, Codazzi F, Podini P, Giorgi F De, Rizzuto R, Meldolesi J, Pozzan T (1995) Overexpression of calreticulin increases the Ca2+ capacity of rapidly exchanging Ca2+ stores and reveals aspects of their lumenal microenvironment and function. J Cell Biol 130(4):847–855

    Article  PubMed  CAS  Google Scholar 

  183. John LM, Lechleiter JD, Camacho P (1998) Differential modulation of SERCA2 isoforms by calreticulin. J Cell Biol 142(4):963–973

    Article  PubMed  CAS  Google Scholar 

  184. Roderick HL, Lechleiter JD, Camacho P (2000) Cytosolic phosphorylation of calnexin controls intracellular Ca2+  oscillations via an interaction with SERCA2b. J Cell Biol 149(6):1235–1248

    Article  PubMed  CAS  Google Scholar 

  185. Baksh S, Burns K, Andrin C, Michalak M (1995) Interaction of calreticulin with protein disulfide isomerase. J Biol Chem 270(52):31338–43134

    Article  PubMed  CAS  Google Scholar 

  186. Li Y, Camacho P (2004) Ca2+-dependent redox modulation of SERCA 2b by ERp57. J Cell Biol 164(1):35–46

    Article  PubMed  CAS  Google Scholar 

  187. Premereur N, Branden C Van Den, Roels F (1986) Cytochrome P-450-dependent H2O2 production demonstrated in vivo. Influence of phenobarbital and allylisopropylacetamide. FEBS Lett 199(1):19–22

    Article  PubMed  CAS  Google Scholar 

  188. Davydov DR, Petushkova NA, Bobrovnikova EV, Knyushko TV, Dansette P (2001) Association of cytochromes P450 1A2 and 2B4: are the interactions between different P450 species involved in the control of the monooxygenase activity and coupling? Adv Exp Med Biol 500:335–338

    Google Scholar 

  189. Haynes CM, Titus EA, Cooper AA ( 2004) Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell 15(5):767–776

    Google Scholar 

  190. Tu BP, Weissman JS (2004) Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 164(3):341–346

    Article  PubMed  CAS  Google Scholar 

  191. Hawkins BJ, Irrinki KM, Mallilankaraman K, Lien YC, Wang Y, Bhanumathy CD, Subbiah R, Ritchie MF, Soboloff J, Baba Y, Kurosaki T, Joseph SK, Gill DL, Madesh M (2010) S-glutathionylation activates STIM1 and alters mitochondrial homeostasis. J Cell Biol 190(3):391–405

    Article  PubMed  CAS  Google Scholar 

  192. Ishikawa T, Watanabe N, Nagano M, Kawai-Yamada M, Lam E (2011) Bax inhibitor-1: a highly conserved endoplasmic reticulum-resident cell death suppressor. Cell Death Differ 18(8):1271–1278

    Article  PubMed  CAS  Google Scholar 

  193. Xu Q, Reed JC (1998) Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol Cell 1(3):337–346

    Article  PubMed  CAS  Google Scholar 

  194. Chae HJ, Ke N, Kim HR, Chen S, Godzik A, Dickman M, Reed JC (2003) Evolutionarily conserved cytoprotection provided by Bax Inhibitor-1 homologs from animals, plants, and yeast. Gene 323:101–113

    Article  PubMed  CAS  Google Scholar 

  195. Lee GH, Kim DS, Kim HT, Lee JW, Chung CH, Ahn T, Lim JM, Kim IK, Chae HJ, Kim HR (2011) Enhanced lysosomal activity is involved in Bax inhibitor-1-induced regulation of the endoplasmic reticulum (ER) stress response and cell death against ER stress: involvement of vacuolar H + -ATPase (V-ATPase). J Biol Chem 286(28):24743–24753

    Article  PubMed  CAS  Google Scholar 

  196. Bailly-Maitre B, Fondevila C, Kaldas F, Droin N, Luciano F, Ricci JE, Croxton R, Krajewska M, Zapata JM, Kupiec-Weglinski JW, Farmer D, Reed JC (2006) Cytoprotective gene bi-1 is required for intrinsic protection from endoplasmic reticulum stress and ischemia-reperfusion injury. Proc Natl Acad Sci U S A 103(8):2809–2814

    Article  PubMed  CAS  Google Scholar 

  197. Westphalen BC, Wessig J, Leypoldt F, Arnold S, Methner A (2005) BI-1 protects cells from oxygen glucose deprivation by reducing the calcium content of the endoplasmic reticulum. Cell Death Differ 12(3):304–3046

    Article  PubMed  CAS  Google Scholar 

  198. Dohm CP, Siedenberg S, Liman J, Esposito A, Wouters FS, Reed JC, Bahr M, Kermer P (2006) Bax inhibitor-1 protects neurons from oxygen-glucose deprivation. J Mol Neurosci 29(1):1–8

    Article  PubMed  CAS  Google Scholar 

  199. Lee GH, Kim HK, Chae SW, Kim DS, Ha KC, Cuddy M, Kress C, Reed JC, Kim HR, Chae HJ (2007) Bax inhibitor-1 regulates endoplasmic reticulum stress-associated reactive oxygen species and heme oxygenase-1 expression. J Biol Chem 282(30):21618–21628

    Article  PubMed  CAS  Google Scholar 

  200. Kim HR, Lee GH, Cho EY, Chae SW, Ahn T, Chae HJ (2009) Bax inhibitor 1 regulates ER-stress-induced ROS accumulation through the regulation of cytochrome P450 2E1. J Cell Sci 122(Pt 8):1126–1133

    Article  PubMed  CAS  Google Scholar 

  201. Lisbona F, Rojas-Rivera D, Thielen, P, Zamorano S, Todd D, Martinon F, Glavic A, Kress C, Lin JH, Walter P, Reed JC, Glimcher LH, Hetz C (2009) BAX inhibitor-1 is a negative regulator of the ER stress sensor IRE1alpha. Mol Cell 33(6):679–691

    Article  PubMed  CAS  Google Scholar 

  202. Hetz C, Bernasconi P, Fisher J, Lee AH, Bassik MC, Antonsson B, Brandt GS, Iwakoshi NN, Schinzel A, Glimcher LH, Korsmeyer SJ ( 2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312(5773):572–576

    Google Scholar 

  203. Rutkowski DT, Arnold SM, Miller CN, Wu J, Li J, Gunnison KM, Mori K, Sadighi Akha AA, Raden D, Kaufman RJ (2006) Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol 4(11):e374

    Article  PubMed  CAS  Google Scholar 

  204. Castillo K, Rojas-Rivera D, Lisbona F, Caballero B, Nassif M, Court FA, Schuck S, Ibar C, Walter P, Sierralta J, Glavic A, Hetz C (2011) BAX inhibitor-1 regulates autophagy by controlling the IRE1alpha branch of the unfolded protein response. EMBO J 30(21):4465–4478

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Research Council of the K.U. Leuven and the Research Foundation – Flanders (F.W.O.) for their support of the research work performed in their lab. We also wish to apologize to those whose research papers in this field were not included in this book chapter. We also wish to thank our national and international collaborators in this field for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert Bultynck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vervliet, T., Kiviluoto, S., Bultynck, G. (2012). ER Stress and UPR Through Dysregulated ER Ca2+ Homeostasis and Signaling. In: Agostinis, P., Afshin, S. (eds) Endoplasmic Reticulum Stress in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4351-9_5

Download citation

Publish with us

Policies and ethics