Skip to main content

Arsenic in Groundwater and the Environment

  • Chapter
  • First Online:
Essentials of Medical Geology

Abstract

Awareness of the problems associated with arsenic in drinking water and the environment has grown significantly over the last two decades or so and today an enormous literature exists documenting its occurrence, behaviour and impacts in many places across the globe. The mobilisation of arsenic in the environment occurs through a complex combination of natural biogeochemical reactions and human interactions. Most recognised problems are generated by mobilisation and transport under natural conditions, but mobilisation has also been caused, or exacerbated, by mining, fossil-fuel combustion and use of synthetic arsenical compounds (pesticides, herbicides, crop desiccants and arsenic-based additives in livestock feed). Arsenical pesticides and herbicides have been used much less over the last few decades, and more recent restrictions have been imposed on the use of arsenic in wood preservation (e.g. European Communities’ Directive 2003/2/EC), but the legacy of such sources may still pose a localised threat to the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed KM, Hoque M, Hasan MK, Ravenscroft P, Chowdhury LR (1998) Occurrence and origin of water well methane gas in Bangladesh. J Geol Soc India 51:697–708

    Google Scholar 

  • Alexandratos VG, Elzinga EJ, Reeder RJ (2007) Arsenate uptake by calcite: macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms. Geochim Cosmochim Acta 71:4172–4187

    Article  Google Scholar 

  • Altamirano Espinoza M, Bundschuh J (2009) Natural arsenic groundwater contamination of the sedimentary aquifers of southwestern Sebaco valley, Nicaragua. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwaters of Latin America. CRC Press/Balkema, Leiden, pp 109–122

    Google Scholar 

  • Amirbahman A, Kent DB, Curtis GP, Davis JA (2006) Kinetics of sorption and abiotic oxidation of arsenic(III) by aquifer materials. Geochim Cosmochim Acta 70:533–547

    Article  Google Scholar 

  • Appelo CAJ, Van der Weiden MJJ, Tournassat C, Charlet L (2002) Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ Sci Technol 36:3096–3103

    Article  Google Scholar 

  • Ayotte JD, Nolan BT, Nucklos JR, Cantor KP, Robinson GR, Baris D, Hayes L, Kargas M, Bress W, Silverman DT, Lubin JH (2006) Modeling the probability of arsenic in groundwater in New England as a tool for exposure assessment. Environ Sci Technol 40:3578–3585

    Article  Google Scholar 

  • Ayotte JD, Szabo Z, Focazio MJ, Eberts SM (2011) Effects of human-induced alteration of groundwater flow on concentrations of naturally-occurring trace elements at water-supply wells. Appl Geochem 26:747–762

    Article  Google Scholar 

  • BAMWSP (2005) Bangladesh Arsenic Mitigation Water Supply Project (BAMWSP). Upazila wise summary results. http://www.bwspp.org/BAMWSPContents/Survey%20Result/Upazila%20Summary.pdf

  • Barker SLL, Hickey KA, Cline JS, Dipple GM, Kilburn MR, Vaughan JR, Longo AA (2009) Uncloaking invisible gold: use of nanoSIMS to evaluate gold, trace elements and sulfur isotopes in pyrite from Carlin-type gold deposits. Econ Geol 104:897–904

    Article  Google Scholar 

  • Bates MN, Rey OA, Biggs ML, Hopenhayn C, Moore LE, Kalman D, Steinmaus C, Smith AH (2004) Case-control study of bladder cancer and exposure to arsenic in Argentina. Am J Epidemiol 159:381–389

    Article  Google Scholar 

  • Bednar AJ, Garbarino JR, Burkhardt MR, Ranville JF, Wildeman TR (2004) Field and laboratory arsenic speciation methods and their application to natural-water analysis. Water Res 38:355–364

    Article  Google Scholar 

  • Belkin HE, Zheng B, Finkelman RB (2000) Human health effects of domestic combustion of coal in rural China: a causal factor for arsenic and fluorine poisoning. In: The Second World Chinese conference on geological sciences, extended abstracts with programs, Stanford, pp 522–524

    Google Scholar 

  • Benner SG, Hansel CM, Wielinga BW, Barber TM, Fendorf S (2002) Reductive dissolution and biomineralization of iron hydroxide under dynamic flow conditions. Environ Sci Technol 36:1705–1711

    Article  Google Scholar 

  • Berg M, Giger W, Tran HC, Pham HV, Trang PTK, Schertenleib R (2006) Extent and severity of arsenic pollution in Vietnam and Cambodia. In: Naidu R, Smith E, Owens G, Bhattacharya P, Nadebaum P (eds) Managing arsenic in the environment – from soil to human health. CSIRO Publishing, Collingwood

    Google Scholar 

  • Berg M, Stengel C, Trang PTK, Hung Viet P, Sampson ML, Leng M, Samreth S, Fredericks D (2007) Magnitude of arsenic pollution in the Mekong and Red River Deltas – Cambodia and Vietnam. Sci Total Environ 372:413–425

    Article  Google Scholar 

  • Berner RA (1981) A new geochemical classification of sedimentary environments. J Sedim Petrol 51:0359–0365

    Google Scholar 

  • BGS, DPHE (2001) Arsenic contamination of groundwater in Bangladesh. In: Kinniburgh DG, Smedley PL (eds) BGS technical report WC/00/19, 4 vols. British Geological Survey, Keyworth (see www.bgs.ac.uk/Arsenic/Bangladesh)

  • Bhattacharya P, Chatterjee D, Jacks G (1997) Occurrence of arsenic-contaminated groundwater in alluvial aquifers from delta plains, Eastern India: options for safe drinking water supply. Water Resour Dev 13:79–92

    Article  Google Scholar 

  • Bhattacharya P, Tandukar N, Neku A, Valero AA, Mukherjee AB, Jacks G (2003) Geogenic arsenic in groundwaters from Terai alluvial plain of Nepal. J Phys IV 107:173–176

    Google Scholar 

  • Bhattacharya P, Claesson M, Fagerberg J, Bundschuh J, Storniolo ADR, Martin RA, Thir JM, Sracek O (2005) Natural arsenic in the groundwater of the alluvial aquifers of Santiago del Estero Province, Argentina. In: Bundschuh J, Bhattacharya P, Chandrasekharam D (eds) Natural arsenic in groundwater: occurrence, remediation and management. Balkema, Leiden, pp 57–65

    Chapter  Google Scholar 

  • Bhattacharya P, Claesson M, Bundschuh J, Sracek O, Fagerberg J, Jacks G, Martin RA, Storniolo AD, Thir JM (2006) Distribution and mobility of arsenic in the Rio Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Sci Total Environ 358:97–120

    Article  Google Scholar 

  • Bian J, Tang J, Zhang L, Ma H, Zhao J (2012) Arsenic distribution and geological factors in the western Jilin province, China. J Geochem Explor 112:347–356

    Article  Google Scholar 

  • Blanchard M, Alfredsson M, Brodholt J, Wright K, Catlow CRA (2007) Arsenic incorporation into FeS2 pyrite and its influence on dissolution: a DFT study. Geochim Cosmochim Acta 71:624–630

    Article  Google Scholar 

  • Blanes PS, Buchhamer EE, Gimenez MC (2011) Natural contamination with arsenic and other trace elements in groundwater of the Central-West region of Chaco, Argentina. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:1197–1206

    Google Scholar 

  • Bostick BC, Fendorf S (2003) Arsenite sorption on troilite (FeS) and pyrite (FeS2). Geochim Cosmochim Acta 67:909–921

    Article  Google Scholar 

  • Boyle DR, Turner RJW, Hall GEM (1998) Anomalous arsenic concentrations in groundwaters of an island community, Bowen Island, British Columbia. Environ Geochem Health 20:199–212

    Article  Google Scholar 

  • Breit GN, Foster AL, Sanzalone RF, Yount JC, Whitney JW, Welch AH, Islam MK, Islam MN (2001) Arsenic cycling in eastern Bangladesh: the role of phyllosilicates. Geol Soc Am Abstr 32:A192

    Google Scholar 

  • Brouste L, Marlin C, Dever L (1997) Geochemistry and residence time estimation of groundwater from the upper aquifer of the Chihuahua desert (Comarca Lagunera, Northern Mexico). Appl Geochem 12:775–786

    Article  Google Scholar 

  • Burgess WG, Hoque MA, Michael HA, Voss CI, Breit GN, Ahmed KM (2010) Vulnerability of deep groundwater in the Bengal Aquifer System to contamination by arsenic. Nat Geosci 3:83–87

    Article  Google Scholar 

  • Buschmann J, Berg M, Stengel C, Sampson ML (2007) Arsenic and manganese contamination of drinking water resources in Cambodia: coincidence of risk areas with low relief topography. Environ Sci Technol 41:2146–2152

    Article  Google Scholar 

  • Cáceres L, Gruttner E, Contreras R (1992) Water recycling in arid regions: Chilean case. Ambio 21:138–144

    Google Scholar 

  • Castro de Esparza ML (2009) The presence of arsenic in drinking water in Latin America and its effect on public health. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwaters of Latin America. CRC Press/Balkema, Leiden, pp 17–29

    Google Scholar 

  • Cebrián ME, Albores MA, Garci-Vargas G, Del Razo LM, Ostrosky-Wegman P (1994) Chronic arsenic poisoning in humans. In: Nriagu JO (ed) Arsenic in the environment, Part II: Human health and ecosystem effects. Wiley, New York, pp 93–107

    Google Scholar 

  • Chakraborti D, Basu GK, Biswas BK, Chowdhury UK, Rahman MM, Paul K, Chowdhury TR, Chanda CR, Lodh D, Ray SL (2001) Characterization of arsenic-bearing sediments in the Gangetic delta of West Bengal, India. In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsenic exposure and health effects IV. Elsevier, Amsterdam, pp 27–52

    Google Scholar 

  • Chakraborti D, Mukherjee SC, Pati S, Sengupta MK, Rahman MM, Chowdhury UK, Lodh D, Chanda CR, Chakraborty AK, Basul GK (2003) Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger? Environ Health Perspect 111:1194–1201

    Article  Google Scholar 

  • Chakraborti D, Sengupta MK, Rahman MM, Ahamed S, Chowdhury UK, Hossain MA, Mukherjee SC, Pati S, Saha KC, Dutta RN, Quamruzzaman Q (2004) Groundwater arsenic contamination and its health effects in the Ganga-Meghna-Brahmaputra plain. J Environ Monit 6:74N–83N

    Article  Google Scholar 

  • Chanpiwat P, Sthiannopkao S, Cho KH, Kim K-W, San V, Suvanthong B, Vongthavady C (2011) Contamination by arsenic and other trace elements of tube-well water along the Mekong River in Lao PDR. Environ Pollut 159:567–576

    Article  Google Scholar 

  • Chen KY, Liu TK (2007) Major factors controlling arsenic occurrence in the groundwater and sediments of the Chianan coastal plain, SW Taiwan. Terr Atmos Ocean Sci 18:975–994

    Article  Google Scholar 

  • Chen SL, Dzeng SR, Yang MH, Chlu KH, Shieh GM, Wal CM (1994) Arsenic species in groundwaters of the Blackfoot disease areas, Taiwan. Environ Sci Technol 28:877–881

    Article  Google Scholar 

  • Chen SL, Yeh SJ, Yang MH, Lin TH (1995) Trace element concentration and arsenic speciation in the well water of a Taiwan area with endemic Blackfoot disease. Biol Trace Elem Res 48:263–274

    Article  Google Scholar 

  • Chitrakar RL, Neku A (2001) The scenario of arsenic in drinking water in Nepal. Department of Water Supply & Sewerage, Kathmandu, p 11

    Google Scholar 

  • Chouinard A, Paquette J, Williams-Jones AE (2005) Crystallographic controls on trace-element incorporation in auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile-Argentina. Can Mineral 43:951–963

    Article  Google Scholar 

  • Chowdhury TR, Manal BK, Samanta G, Basu GK, Chowdhury PP, Chanda CR, Karan NK, Lodh D, Dhar RK, Das D, Saha KC, Chakraborti D (1997) Arsenic in groundwater in six districts of West Bengal, India: the biggest arsenic calamity in the world: the status report up to August 1995. In: Abernathy CO, Calderon RL, Chappell WR (eds) Arsenic: exposure and health effects. Chapman and Hall, London, pp 93–111

    Google Scholar 

  • Cook SJ, Levson VM, Giles TR, Jackaman W (1995) A comparison of regional lake sediment and till geochemistry surveys – a case-study from the Fawnie Creek area, Central British Columbia. Explor Min Geol 4:93–110

    Google Scholar 

  • Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurrence and uses. VCH, Weinheim

    Google Scholar 

  • Cumbal L, Bundschuh J, Aguirre ME, Murgueitio E, Tipan I, Chavez C (2009) The origin of arsenic in waters and sediments from Papallacta lake area in Equador. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwaters of Latin America. CRC Press/Balkema, Boca Raton

    Google Scholar 

  • Cummings DE, Caccavo F, Fendorf S, Rosenzweig RF (1999) Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ Sci Technol 33:723–729

    Article  Google Scholar 

  • Cummings DE, March AW, Bostick B, Spring S, Caccavo F Jr, Fendorf S, Rosenzweig RF (2000) Evidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d’Alene, Idaho). Appl Environ Microbiol 66:154–162

    Article  Google Scholar 

  • Das D, Chatterjee A, Samanta G, Mandal B, Chowdhury TR, Chowdhury PP, Chanda C, Basu G, Lodh D, Nandi S, Chakraborty T, Mandal S, Bhattacharya SM, Chakraborti D (1994) Arsenic contamination in groundwater in 6 districts of West Bengal, India – the biggest arsenic calamity in the world. Analyst 119:N168–N170

    Article  Google Scholar 

  • Das D, Chatterjee A, Mandal BK, Samanta G, Chakraborti D, Chanda B (1995) Arsenic in ground-water in 6 districts of West Bengal, India – the biggest arsenic calamity in the world. 2. Arsenic concentration in drinking-water, hair, nails, urine, skin-scale and liver-tissue (biopsy) of the affected people. Analyst 120:917–924

    Article  Google Scholar 

  • Datta DK, Subramanian V (1997) Texture and mineralogy of sediments from the Ganges-Brahmaputra-Meghna river system in the Bengal basin, Bangladesh and their environmental implications. Environ Geol 30:181–188

    Article  Google Scholar 

  • Davison W (1993) Iron and manganese in lakes. Earth Sci Rev 34:119–163

    Article  Google Scholar 

  • de Vitre R, Belzile N, Tessier A (1991) Speciation and adsorption of arsenic on diagenetic iron oxyhydroxides. Limnol Oceanogr 36:1480–1485

    Article  Google Scholar 

  • Deditius AP, Utsunomiya S, Renock D, Ewing RC, Ramana CV, Becker U, Kesler SE (2008) A proposed new type of arsenian pyrite: composition, nanostructure and geological significance. Geochim Cosmochim Acta 72:2919–2933

    Article  Google Scholar 

  • Del Razo LM, Arellano MA, Cebrian ME (1990) The oxidisation states of arsenic in well-water from a chronic arsenicism area of Northern Mexico. Environ Pollut 64:143–153

    Article  Google Scholar 

  • Del Razo LM, Hernandez JL, Garcia-Vargas GG, Ostrosky-Wegman P, Cortinas de Nava C, Cebrian ME (1994) Urinary excretion of arsenic species in a human population chronically exposed to arsenic via drinking water. A pilot study. In: Chappell WR, Abernathy CO, Cothern CR (eds) Arsenic exposure and health. Science and Technology Letters, Northwood, pp 91–100

    Google Scholar 

  • Deng Y, Wang Y, Ma T (2009) Isotope and minor element geochemistry of high arsenic groundwater from Hangjinhouqi, the Hetao Plain, Inner Mongolia. Appl Geochem 24:587–599

    Article  Google Scholar 

  • Di Benedetto F, Costagliola P, Benvenuti M, Lattanzi P, Romanelli M, Tanelli G (2006) Arsenic incorporation in natural calcite lattice: evidence from electron spin echo spectroscopy. Earth Planet Sci Lett 246:458–465

    Article  Google Scholar 

  • Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37:4182–4189

    Article  Google Scholar 

  • Dudas MJ (1984) Enriched levels of arsenic in post-active acid sulfate soils in Alberta. Soil Sci Soc Am J 48:1451–1452

    Article  Google Scholar 

  • Dzombak DA, Morel FMM (1990) Surface complexation modelling – hydrous ferric oxide. Wiley, New York

    Google Scholar 

  • Ellis AJ, Mahon WAJ (1977) Chemistry and geothermal systems. Academic, New York

    Google Scholar 

  • Farias SS, Casa VA, Vazquez C, Ferpozzi L, Pucci GN, Cohen IM (2003) Natural contamination with arsenic and other trace elements in ground waters of Argentine Pampean Plain. Sci Total Environ 309:187–199

    Article  Google Scholar 

  • Fendorf S, Michael HA, van Geen A (2010) Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328:1123–1127

    Article  Google Scholar 

  • Focazio MJ, Welch AH, Watkins SA, Helsel DR, Horng MA (2000) A retrospective analysis of the occurrence of arsenic in groundwater resources of the United States and limitations in drinking water supply characterizations. U.S. Geological Survey, Denver, p 11

    Google Scholar 

  • Fontaine JA (1994) Regulating arsenic in Nevada drinking water supplies: past problems, future challenges. In: Chappell WR, Abernathy CO, Cothern CR (eds) Arsenic exposure and health. Science and Technology Letters, Northwood, pp 285–288

    Google Scholar 

  • Fredrickson JK, Zachara JM, Kennedy DW, Dong H, Onstott TC, Hinman NW, Li S-M (1998) Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim Cosmochim Acta 62:3239–3257

    Article  Google Scholar 

  • Fujii R, Swain WC (1995) Areal distribution of selected trace elements, salinity, and major ions in shallow ground water, Tulare Basin, Southern San Joaquin Valley, California. US geological survey water-resources investigations report 95-4048. USGS

    Google Scholar 

  • Garai R, Chakraborty A, Dey S, Saha K (1984) Chronic arsenic poisoning from tube-well water. J Indian Med Assoc 82:34–35

    Google Scholar 

  • Goldberg S (1986) Chemical modeling of arsenate adsorption on aluminum and iron oxide minerals. Soil Sci Soc Am J 50:1154–1157

    Article  Google Scholar 

  • Goldberg S, Glaubig RA (1988) Anion sorption on a calcareous, montmorillonitic soil – arsenic. Soil Sci Soc Am J 52:1297–1300

    Article  Google Scholar 

  • Gomez JJ, Lillo J, Sahun B (2006) Naturally occurring arsenic in groundwater and identification of the geochemical sources in the Duero Cenozoic Basin, Spain. Environ Geol 50:1151–1170

    Article  Google Scholar 

  • Gomez ML, Blarasin MT, Martinez DE (2009) Arsenic and fluoride in a loess aquifer in the central area of Argentina. Environ Geol 57:143–155

    Article  Google Scholar 

  • Guerin WF, Blakemore RP (1992) Redox cycling of iron supports growth and magnetite synthesis by Aquaspirillum magnetotacticum. Appl Environ Microbiol 58:1102–1109

    Google Scholar 

  • Guo HR, Chen CJ, Greene HL (1994) Arsenic in drinking water and cancers: a brief descriptive view of Taiwan studies. In: Chappell WR, Abernathy CO, Cothern CR (eds) Arsenic exposure and health. Science and Technology Letters, Northwood, pp 129–138

    Google Scholar 

  • Guo XJ, Fujino Y, Kaneko S, Wu KG, Xia YJ, Yoshimura T (2001) Arsenic contamination of groundwater and prevalence of arsenical dermatosis in the Hetao plain area, Inner Mongolia, China. Mol Cell Biochem 222:137–140

    Article  Google Scholar 

  • Guo HM, Wang YX, Shpeizer GM, Yan SL (2003) Natural occurrence of arsenic in shallow groundwater, Shanyin, Datong Basin, China. J Environ Sci Health A Toxic/Hazard Subst Environ Eng 38:2565–2580

    Article  Google Scholar 

  • Gurung J, Ishiga H, Khadka MS (2005) Geological and geochemical examination of arsenic contamination in groundwater in the Holocene Terai Basin, Nepal. Environ Geol 49:98–113

    Article  Google Scholar 

  • Gurung JK, Ishiga H, Khadka MS, Shrestha NR (2007) The geochemical study of fluvio-lacustrine aquifers in the Kathmandu Basin (Nepal) and the implications for the mobilization of arsenic. Environ Geol 52:503–517

    Article  Google Scholar 

  • Gurzau ES, Gurzau AE (2001) Arsenic exposure from drinking groundwater in Transylvania, Romania: an overview. In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsenic exposure and health effects IV. Elsevier, Amsterdam, pp 181–184

    Google Scholar 

  • Gustafsson JP, Tin NT (1994) Arsenic and selenium in some Vietnamese acid sulfate soils. Sci Total Environ 151:153–158

    Article  Google Scholar 

  • Harvey CF, Swartz CH, Badruzzaman ABM, Keon-Blute N, Yu W, Ali MA, Jay J, Beckie R, Niedan V, Brabander D, Oates PM, Ashfaque KN, Islam S, Hemond HF, Ahmed MF (2002) Arsenic mobility and groundwater extraction in Bangladesh. Science 298:1602–1606

    Article  Google Scholar 

  • Harvey CF, Ashfaque KN, Yu W, Badruzzaman ABM, Ali MA, Oates PM, Michael HA, Neumann RB, Beckie R, Islam S, Ahmed MF (2006) Groundwater dynamics and arsenic contamination in Bangladesh. Chem Geol 228:112–136

    Article  Google Scholar 

  • Herbel M, Fendorf S (2005) Transformation and transport of arsenic within ferric hydroxide coated sands upon dissimilatory reducing bacterial activity. In: O’Day PA, Vlassopoulos D, Meng X, Benning LG (eds) Advances in arsenic research: integration of experimental and observational studies and implications for mitigation. American Chemical Society, Washington, DC, pp 77–90

    Chapter  Google Scholar 

  • Herbel M, Fendorf S (2006) Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands. Chem Geol 228:16–32

    Article  Google Scholar 

  • Hering J, Kneebone PE (2002) Biogeochemical controls on arsenic occurrence and mobility in water supplies. In: Frankenberger W (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 155–181

    Google Scholar 

  • Hopenhayn-Rich C, Biggs ML, Fuchs A, Bergoglio R, Tello EE, Nicolli H, Smith AH (1996) Bladder-cancer mortality associated with arsenic in drinking water in Argentina. Epidemiology 7:117–124

    Article  Google Scholar 

  • Horneman A, van Geen A, Kent D, Mathe PE, Zheng Y, Dhar RK, O’Connell S, Hoque M, Aziz Z, Shamsudduha M, Seddique AA, Ahmad KM (2004) Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part 1: Evidence from sediment profiles. Geochim Cosmochim Acta 68:3459–3473

    Article  Google Scholar 

  • Hsu KH, Froines JR, Chen CJ (1997) Studies of arsenic ingestion from drinking water in northeastern Taiwan: chemical speciation and urinary metabolites. In: Abernathy CO, Calderon RL, Chappell WR (eds) Arsenic exposure and health effects. Chapman and Hall, London, pp 190–209

    Google Scholar 

  • Huang JH, Matzner E (2006) Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany. Geochim Cosmochim Acta 70:2023–2033

    Article  Google Scholar 

  • IMTA (1992) Estudio hidroquímico y isotópico del acuífero granular de la Comarca Lagunera. Instituto Mexicano de Technologia del Agua, Cuernavaca, México

    Google Scholar 

  • Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68–71

    Article  Google Scholar 

  • Islam FS, Boothman C, Gault AG, Polya DA, Lloyd JR (2005a) Potential role of the Fe(III)-reducing bacteria Geobacter and Geothrix in controlling arsenic solubility in Bengal delta sediments. Mineral Mag 69:865–875

    Article  Google Scholar 

  • Islam FS, Pederick RL, Gault AG, Adams LK, Polya DA, Charnock JM, Lloyd JR (2005b) Interactions between the Fe(III)-reducing bacterium Geobacter sulfurreducens and arsenate, and capture of the metalloid by biogenic Fe(II). Appl Environ Microbiol 71:8642–8648

    Article  Google Scholar 

  • Junta Municipal (2000) Prospección hidrogeologica e hidrogeoquímica en el bolsón de la Mesilla, Chihuahua (Zona de Conejos-Medanos), Report Técnico No DS GEO-011/00. Junta Municipal de Agua y Saneamiento de Juárez

    Google Scholar 

  • Karcher S, Caceres L, Jekel M, Contreras R (1999) Arsenic removal from water supplies in Northern Chile using ferric chloride coagulation. J Chart Inst Water Environ Manage 13:164–169

    Article  Google Scholar 

  • Klump S, Kipfer R, Cirpka OA, Harvey CF, Brennwald MS, Ashfaque KN, Badruzzaman ABM, Hug SJ, Imboden DM (2006) Groundwater dynamics and arsenic mobilization in Bangladesh assessed using noble gases and tritium. Environ Sci Technol 40:243–250

    Article  Google Scholar 

  • Kocar BD, Herbel MJ, Tufano KJ, Fendorf S (2006) Contrasting effects of dissimilatory iron(III) and arsenic(V) reduction on arsenic retention and transport. Environ Sci Technol 40:6715–6721

    Article  Google Scholar 

  • Kondo H, Ishiguro Y, Ohno K, Nagase M, Toba M, Takagi M (1999) Naturally occurring arsenic in the groundwaters in the southern region of Fukuoka Prefecture, Japan. Water Res 33:1967–1972

    Article  Google Scholar 

  • Lewis C, Ray DT, Chiu KK (2007) Primary geologic sources of arsenic in the Chianan Plain (Blackfoot disease area) and the Lanyang Plain of Taiwan. Int Geol Rev 49:947–961

    Article  Google Scholar 

  • Lin TH, Huang YL, Wang MY (1998) Arsenic species in drinking water, hair, fingernails, and urine of patients with blackfoot disease. J Toxicol Environ Health A 53:85–93

    Article  Google Scholar 

  • Lloyd JR, Oremland RS (2006) Microbial transformations of arsenic in the environment: from soda lakes to aquifers. Elements 2:85–90

    Article  Google Scholar 

  • Lu FJ, Shih SR, Liu TM, Shown SH (1990) The effect of fluorescent humic substances existing in the well water of Blackfoot disease endemic areas in Taiwan on prothrombin time and activated partial thromboplastin time in vitro. Thromb Res 57:747–753

    Article  Google Scholar 

  • Luo ZD, Zhang YM, Ma L, Zhang GY, He X, Wilson R, Byrd DM, Griffiths JG, Lai S, He L, Grumski K, Lamm SH (1997) Chronic arsenicism and cancer in Inner Mongolia – consequences of well-water arsenic levels greater than 50 μg l−1. In: Abernathy CO, Calderon RL, Chappell WR (eds) Arsenic exposure and health effects. Chapman and Hall, London, pp 55–68

    Google Scholar 

  • Maest AS, Pasilis SP, Miller LG, Nordstrom DK (1992) Redox geochemistry of arsenic and iron in Mono Lake, California, USA. In: Kharaka Y, Maest A (eds) Proceedings of the seventh international symposium on water-rock interaction, Park City, Utah, USA, 13–18 July 1992. A.A. Balkema, Rotterdam, pp 507–511

    Google Scholar 

  • Maharjan M, Watanabe C, Ahmad SA, Umezaki M, Ohtsuka R (2007) Mutual interaction between nutritional status and chronic arsenic toxicity due to groundwater contamination in an area of Terai, lowland Nepal. J Epidemiol Community Health 61:389–394

    Article  Google Scholar 

  • Manning BA, Goldberg S (1997) Adsorption and stability of arsenic(III) at the clay mineral-water interface. Environ Sci Technol 31:2005–2011

    Article  Google Scholar 

  • Masscheleyn PH, DeLaune RD, Patrick WH (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25:1414–1419

    Article  Google Scholar 

  • McArthur JM, Ravenscroft P, Safiulla S, Thirwall MF (2001) Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour Res 37:109–117

    Article  Google Scholar 

  • McArthur JM, Banerjee DM, Hudson-Edwards KA, Mishra R, Purohit R, Ravenscroft P, Cronin A, Howarth RJ, Chatterjee A, Talukder T, Lowry D, Houghton S, Chadha DK (2004) Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Appl Geochem 19:1255–1293

    Article  Google Scholar 

  • Michael HA, Voss CI (2008) Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin. Proc Natl Acad Sci U S A 105:8531–8536

    Article  Google Scholar 

  • Morales L, Puigdomenech C, Punti A, Torres E, Canyellas C, Cortina JL, Sancha AM (2009) Arsenic and water quality of rural community wells in San Juan de Limay, Nicaragua. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwaters of Latin America. CRC Press/Balkema, Leiden, pp 123–128

    Google Scholar 

  • Mukherjee AB, Bhattacharya P, Jacks G, Banerjee DM, Ramanathan CM, Chandrashekharam D, Chatterjee D, Naidu R (2006) Groundwater arsenic contamination in India. In: Naidu R, Smith E, Owens G, Bhattacharya P, Nadebaum P (eds) Managing arsenic in the environment – from soil to human health. CSIRO Publishing, Collingwood

    Google Scholar 

  • Nath B, Mallik SB, Stueben D, Chatterjee D, Charlet L (2010) Electrical resistivity investigation of the arsenic affected alluvial aquifers in West Bengal, India: usefulness in identifying the areas of low and high groundwater arsenic. Environ Earth Sci 60:873–884

    Article  Google Scholar 

  • Nguyen VA, Bang S, Pham Hung V, Kim K-W (2009) Contamination of groundwater and risk assessment for arsenic exposure in Ha Nam province, Vietnam. Environ Int 35:466–472

    Article  Google Scholar 

  • Nickson RT, McArthur JM, Ravenscroft P, Burgess WG, Ahmed KM (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl Geochem 15:403–413

    Article  Google Scholar 

  • Nicolli HB, Suriano JM, Peral MAG, Ferpozzi LH, Baleani OA (1989) Groundwater contamination with arsenic and other trace-elements in an area of the Pampa, province of Cordoba, Argentina. Environ Geol Water Sci 14:3–16

    Article  Google Scholar 

  • Nicolli HB, Bundschuh J, Garcia JW, Falcon CM, Jean J-S (2010) Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates Evidence from the Chaco-Pampean plain (Argentina). Water Res 44:5589–5604

    Article  Google Scholar 

  • Nimick DA, Moore JN, Dalby CE, Savka MW (1998) The fate of geothermal arsenic in the Madison and Missouri Rivers, Montana and Wyoming. Water Resour Res 34:3051–3067

    Article  Google Scholar 

  • Ning Z, Lobdell DT, Kwok RK, Liu Z, Zhang S, Ma C, Riediker M, Mumford JL (2007) Residential exposure to drinking water arsenic in Inner Mongolia, China. Toxicol Appl Pharmacol 222:351–356

    Article  Google Scholar 

  • Nordstrom DK (2002) Public health – worldwide occurrences of arsenic in ground water. Science 296:2143–2144

    Article  Google Scholar 

  • Nordstrom DK, Alpers CN (1999) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain superfund site, California. Proc Natl Acad Sci U S A 96:3455–3462

    Article  Google Scholar 

  • O’Day PA, Vlassopoulos D, Root R, Rivera N (2004) The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc Natl Acad Sci U S A 101:13703–13708

    Article  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:93–94

    Article  Google Scholar 

  • Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13:45–49

    Article  Google Scholar 

  • Oremland R, Newman D, Kail B, Stolz J (2002) Bacterial respiration of arsenate and its significance in the environment. In: Frankenberger W (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 273–295

    Google Scholar 

  • Oremland RS, Stolz JF, Hollibaugh JT (2004) The microbial arsenic cycle in Mono Lake, California. FEMS Microbiol Ecol 48:15–27

    Article  Google Scholar 

  • Oscarson DW, Huang PM, Defosse C, Herbillon A (1981a) Oxidative power of Mn(IV) and Fe(III) oxides with respect to As(III) in terrestrial and aquatic environments. Nature 291:50–51

    Article  Google Scholar 

  • Oscarson DW, Huang PM, Liaw WK (1981b) Role of manganese in the oxidation of arsenite by freshwater lake sediments. Clays Clay Miner 29:219–225

    Article  Google Scholar 

  • Pant BR (2011) Ground water quality in the Kathmandu valley of Nepal. Environ Monit Assess 178:477–485

    Article  Google Scholar 

  • Pederick RL, Gault AG, Charnock JM, Polya DA, Lloyd JR (2007) Probing the biogeochemistry of arsenic: response of two contrasting aquifer sediments from Cambodia to stimulation by arsenate and ferric iron. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:1763–1774

    Article  Google Scholar 

  • Pedersen HD, Postma D, Jakobsen R (2006) Release of arsenic associated with the reduction and transformation of iron oxides. Geochim Cosmochim Acta 70:4116–4129

    Article  Google Scholar 

  • Plumlee GS, Smith KS, Montour MR, Ficklin WH, Mosier EL (1999) Geologic controls on the composition of natural waters and mine waters draining diverse mineral-deposit types. In: Filipek LH, Plumlee GS (eds) Reviews in economic geology, vol 6B. Society of Economic Geologists, Littleton, pp 373–432

    Google Scholar 

  • Pokhrel D, Bhandari BS, Viraraghavan T (2009) Arsenic contamination of groundwater in the Terai region of Nepal: an overview of health concerns and treatment options. Environ Int 35:157–161

    Article  Google Scholar 

  • Polizzotto ML, Harvey CF, Sutton SR, Fendorf S (2005) Processes conducive to the release and transport of arsenic into aquifers of Bangladesh. Proc Natl Acad Sci U S A 102:18819–18823

    Article  Google Scholar 

  • Polizzotto ML, Harvey CF, Li GC, Badruzzman B, Ali A, Newville M, Sutton S, Fendorf S (2006) Solid-phases and desorption processes of arsenic within Bangladesh sediments. Chem Geol 228:97–111

    Article  Google Scholar 

  • Polizzotto ML, Kocar BD, Benner SG, Sampson M, Fendorf S (2008) Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 454:505–508

    Article  Google Scholar 

  • Polya DA, Gault AG, Diebe N, Feldman P, Rosenboom JW, Gilligan E, Fredericks D, Milton AH, Sampson M, Rowland HAL, Lythgoe PR, Jones JC, Middleton C, Cooke DA (2005) Arsenic hazard in shallow Cambodian groundwaters. Mineral Mag 69:807–823

    Article  Google Scholar 

  • Postma D, Larsen F, Hue NTM, Duc MT, Viet PH, Nhan PQ, Jessen S (2007) Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modeling. Geochim Cosmochim Acta 71:5054–5071

    Article  Google Scholar 

  • Rahman MM, Chowdhury UK, Mukherjee SC, Mondal BK, Paul K, Lodh D, Biswas BK, Chanda CR, Basu GK, Saha KC, Roy S, Das R, Palit SK, Quamruzzaman Q, Chakraborti D (2001) Chronic arsenic toxicity in Bangladesh and West Bengal, India – a review and commentary. J Toxicol Clin Toxicol 39:683–700

    Article  Google Scholar 

  • Reich M, Becker U (2006) First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite. Chem Geol 225:278–290

    Article  Google Scholar 

  • Reimann C, Bjorvatn K, Frengstad B, Melaku Z, Tekle-Haimanot R, Siewers U (2003) Drinking water quality in the Ethiopian section of the East African Rift Valley I – data and health aspects. Sci Total Environ 311:65–80

    Article  Google Scholar 

  • Riedel FN, Eikmann T (1986) Natural occurrence of arsenic and its compounds in soils and rocks. Wiss Umwelt 3–4:108–117

    Google Scholar 

  • Robertson FN (1989) Arsenic in groundwater under oxidizing conditions, south-west United States. Environ Geochem Health 11:171–185

    Article  Google Scholar 

  • Robinson B, Outred H, Brooks R, Kirkman J (1995) The distribution and fate of arsenic in the Waikato River System, North Island, New Zealand. Chem Spec Bioavailab 7:89–96

    Google Scholar 

  • Romero L, Alonso H, Campano P, Fanfani L, Cidu R, Dadea C, Keegan T, Thornton I, Farago M (2003) Arsenic enrichment in waters and sediments of the Rio Loa (Second Region, Chile). Appl Geochem 18:1399–1416

    Article  Google Scholar 

  • Romero FM, Armienta MA, Carrillo-Chavez A (2004) Arsenic sorption by carbonate-rich aquifer material, a control on arsenic mobility at Zimapan, Mexico. Arch Environ Contam Toxicol 47:1–13

    Article  Google Scholar 

  • Rosas I, Belmont R, Armienta A, Baez A (1999) Arsenic concentrations in water, soil, milk and forage in Comarca Lagunera, Mexico. Water Air Soil Pollut 112:133–149

    Article  Google Scholar 

  • Rosenboom JW (2004) Not just red or green. An analysis of arsenic data from 15 upazilas in Bangladesh. APSU, Arsenic Policy Support Unit, Bangladesh

    Google Scholar 

  • Rowland HAL, Gault AG, Charnock JM, Polya DA (2005) Preservation and XANES determination of the oxidation state of solid-phase arsenic in shallow sedimentary aquifers in Bengal and Cambodia. Mineral Mag 69:825–839

    Article  Google Scholar 

  • Rowland HAL, Pederick RL, Polya DA, Pancost RD, Van Dongen BE, Gault AG, Vaughan DJ, Bryant C, Anderson B, Lloyd JR (2007) The control of organic matter on microbially mediated iron reduction and arsenic release in shallow alluvial aquifers, Cambodia. Geobiology 5:281–292

    Article  Google Scholar 

  • Ryker SJ (2001) Mapping arsenic in groundwater: a real need, but a hard problem – why was the map created? Geotimes 46:34–36

    Google Scholar 

  • Sampson ML, Bostick B, Chiew H, Hagan JM, Shantz A (2008) Arsenicosis in Cambodia: case studies and policy response. Appl Geochem 23:2977–2986

    Article  Google Scholar 

  • Savage KS, Tingle TN, O’Day PA, Waychunas GA, Bird DK (2000) Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California. Appl Geochem 15:1219–1244

    Article  Google Scholar 

  • Savage KS, Bird DK, O’Day PA (2005) Arsenic speciation in synthetic jarosite. Chem Geol 215:473–498

    Article  Google Scholar 

  • Scanlon BR, Nicot JP, Reedy RC, Kurtzman D, Mukherjee A, Nordstrom DK (2009) Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA. Appl Geochem 24:2061–2071

    Article  Google Scholar 

  • Schreiber ME, Simo JA, Freiberg PG (2000) Stratigraphic and geochemical controls on naturally occurring arsenic in groundwater, eastern Wisconsin, USA. Hydrogeol J 8:161–176

    Google Scholar 

  • Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279:1519–1522

    Article  Google Scholar 

  • Shotyk W (1996) Natural and anthropogenic enrichments of As, Cu, Pb, Sb, and Zn in ombrotrophic versus minerotrophic peat bog profiles, Jura Mountains, Switzerland. Water Air Soil Pollut 90:375–405

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  • Smedley PL, Nicolli HB, Macdonald DMJ, Barros AJ, Tullio JO (2002) Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl Geochem 17:259–284

    Article  Google Scholar 

  • Smedley PL, Zhang M-Y, Zhang G-Y, Luo Z-D (2003) Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Appl Geochem 18:1453–1477

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG, Macdonald DMJ, Nicolli HB, Barros AJ, Tullio JO, Pearce JM, Alonso MS (2005) Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Appl Geochem 20:989–1016

    Article  Google Scholar 

  • Smedley PL, Knudsen J, Maiga D (2007) Arsenic in groundwater from mineralised Proterozoic basement rocks of Burkina Faso. Appl Geochem 22:1074–1092

    Article  Google Scholar 

  • So HU, Postma D, Jakobsen R, Larsen F (2008) Sorption and desorption of arsenate and arsenite on calcite. Geochim Cosmochim Acta 72:5871–5884

    Article  Google Scholar 

  • Sracek A, Novak M, Sulovsky P, Martin R, Bundschuh J, Bhattacharya P (2009) Mineralogical study of arsenic-enriched aquifer sediments at Santiago del Estero, Northwest Argentina. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwaters of Latin America. CRC Press/Balkema, Leiden

    Google Scholar 

  • Stachowicz M, Hiemstra T, Van Riemsdijk WH (2007) Arsenic-bicarbonate interaction on goethite particles. Environ Sci Technol 41:5620–5625

    Article  Google Scholar 

  • Stollenwerk KG (2003) Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption. In: Stollenwerk KG (ed) Arsenic in ground water: geochemistry and occurrence. Kluwer, Boston, pp 67–100

    Chapter  Google Scholar 

  • Stollenwerk KG, Breit GN, Welch AH, Yount JC, Whitney JW, Foster AL, Uddin MN, Majumder RK, Ahmed N (2007) Arsenic attenuation by oxidized aquifer sediments in Bangladesh. Sci Total Environ 379:133–150

    Article  Google Scholar 

  • Swartz CH, Blute NK, Badruzzman B, Ali A, Brabander D, Jay J, Besancon J, Islam S, Hemond HF, Harvey CF (2004) Mobility of arsenic in a Bangladesh aquifer: inferences from geochemical profiles, leaching data, and mineralogical characterization. Geochim Cosmochim Acta 68:4539–4557

    Article  Google Scholar 

  • Swedlund PJ, Webster JG (1999) Adsorption and polymerisation of silicic acid on ferrihydrite, and its effect on arsenic adsorption. Water Res 33:3413–3422

    Article  Google Scholar 

  • Tandukar N, Bhattacharya P, Jacks G, Valero AA (2005) Naturally occurring arsenic in groundwater of Terai region in Nepal and mitigation options. In: Bundschuh J, Bhattacharya P, Chandrasekharam D (eds) Natural arsenic in groundwater: occurrence, remediation and management. A.A. Balkema, Leiden, pp 41–48

    Google Scholar 

  • Taylor RM (1980) Formation and properties of the Fe(II)Fe(III) hydroxy-carbonate and its possible significance in soil formation. Clay Miner 15:369–382

    Article  Google Scholar 

  • Thompson JM, Demonge JM (1996) Chemical analyses of hot springs, pools, and geysers from Yellowstone National Park, Wyoming, and vicinity, 1980–1993. USGS Open-File Report

    Google Scholar 

  • Tseng WP, Chu HM, How SW, Fong JM, Lin CS, Yeh S (1968) Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst 40:453–463

    Google Scholar 

  • Tufano KJ, Fendorf S (2008) Confounding impacts of iron reduction on arsenic retention. Environ Sci Technol 42:4777–4783

    Article  Google Scholar 

  • van Geen A, Zheng Y, Stute M, Ahmed KM (2003a) Comment on “Arsenic mobility and groundwater extraction in Bangladesh” (II). Science 300:584C

    Article  Google Scholar 

  • van Geen A, Zheng Y, Versteeg R, Stute M, Horneman A, Dhar R, Steckler M, Gelman A, Small C, Ahsan H, Graziano JH, Hussain I, Ahmed KM (2003b) Spatial variability of arsenic in 6000 tube wells in a 25 km2 area of Bangladesh. Water Resour Res 39, art. no.-1140

    Google Scholar 

  • van Geen A, Zheng Y, Cheng Z, Aziz Z, Horneman A, Dhar RK, Mailloux B, Stute M, Weinman B, Goodbred S, Seddique AA, Hope MA, Ahmed KM (2006) A transect of groundwater and sediment properties in Araihazar, Bangladesh: further evidence of decoupling between As and Fe mobilization. Chem Geol 228:85–96

    Article  Google Scholar 

  • van Geen A, Zheng Y, Goodbred S, Horneman A, Aziz Z, Cheng Z, Stute M, Mailloux B, Weinman B, Hoque MA, Seddique AA, Hossain MS, Chowdhury SH, Ahmed KM (2008) Flushing history as a hydrogeological control on the regional distribution of arsenic in shallow groundwater of the Bengal Basin. Environ Sci Technol 42:2283–2288

    Article  Google Scholar 

  • Varsányi I, Fodré Z, Bartha A (1991) Arsenic in drinking water and mortality in the southern Great Plain, Hungary. Environ Geochem Health 13:14–22

    Article  Google Scholar 

  • Wang L, Huang J (1994) Chronic arsenism from drinking water in some areas of Xinjiang, China. In: Nriagu JO (ed) Arsenic in the environment, Part II: Human health and ecosystem effects. Wiley, New York, pp 159–172

    Google Scholar 

  • Warren C (2001) Hydrogeology and groundwater quality of Los Pereyras, Tucuman, Argentina, University College. University College London, London

    Google Scholar 

  • Webster JG (1999) Arsenic. In: Marshall CP, Fairbridge RW (eds) Encyclopaedia of geochemistry. Chapman and Hall, London, pp 21–22

    Google Scholar 

  • Webster JG (2003) Arsenic adsorption on natural riverine suspended particulate material (SPM). Abstr Pap Am Chem Soc 226:U583

    Google Scholar 

  • Webster JG, Nordstrom DK (2003) Geothermal arsenic. In: Stollenwerk KG (ed) Arsenic in ground water: geochemistry and occurrence. Kluwer, Boston, pp 101–125

    Chapter  Google Scholar 

  • Welch AH, Lico MS, Hughes JL (1988) Arsenic in ground-water of the Western United States. Ground Water 26:333–347

    Article  Google Scholar 

  • Welch AH, Westjohn DB, Helsel DR, Wanty RB (2000) Arsenic in ground water of the United States: occurrence and geochemistry. Groundwater 38:589–604

    Article  Google Scholar 

  • White DE, Hem JD, Waring GA (1963) Chemical composition of sub-surface waters. In: Fleischer M (ed) Data of geochemistry, 6th edn. Geological Survey, Washington, DC, pp 1–67

    Google Scholar 

  • Wilkie JA, Hering JG (1996) Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids Surf A Physicochem Eng Asp 107:97–110

    Article  Google Scholar 

  • Wilkie JA, Hering JG (1998) Rapid oxidation of geothermal arsenic(III) in streamwaters of the eastern Sierra Nevada. Environ Sci Technol 32:657–662

    Article  Google Scholar 

  • Williams M (1997) Mining-related arsenic hazards: Thailand case-study. British Geological Survey technical report WC/97/49, 36 pp

    Google Scholar 

  • Williams M, Fordyce F, Paijitprapapon A, Charoenchaisri P (1996) Arsenic contamination in surface drainage and groundwater in part of the southeast Asian tin belt, Nakhon Si Thammarat Province, southern Thailand. Environ Geol 27:16–33

    Article  Google Scholar 

  • Winkel LHE, Pham Thi Kim T, Vi Mai L, Stengel C, Amini M, Nguyen Thi H, Pham Hung V, Berg M (2011) Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. Proc Natl Acad Sci U S A 108:1246–1251

    Article  Google Scholar 

  • Wyatt CJ, Fimbres C, Romo L, Mendez RO, Grijalva M (1998) Incidence of heavy metal contamination in water supplies in Northern Mexico. Environ Res 76:114–119

    Article  Google Scholar 

  • Xie X, Wang Y, Su C, Liu H, Duan M, Xie Z (2008) Arsenic mobilization in shallow aquifers of Datong Basin: hydrochemical and mineralogical evidences. J Geochem Explor 98:107–115

    Article  Google Scholar 

  • Xie X, Ellis A, Wang Y, Xie Z, Duan M, So C (2009) Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Sci Total Environ 407:3823–3835

    Article  Google Scholar 

  • Ying SC, Kocar BD, Griffis SD, Fendorf S (2011) Competitive microbially and Mn oxide mediated redox processes controlling arsenic speciation and partitioning. Environ Sci Technol 45:5572–5579

    Article  Google Scholar 

  • Yokoyama T, Takahashi Y, Tarutani T (1993) Simultaneous determination of arsenic and arsenious acids in geothermal water. Chem Geol 103:103–111

    Article  Google Scholar 

  • Zheng Y, van Geen A, Stute M, Dhar R, Mo Z, Cheng Z, Horneman A, Gavrieli I, Simpson HJ, Versteeg R, Steckler M, Grazioli-Venier A, Goodbred S, Shahnewaz M, Shamsudduha M, Hoque MA, Ahmed KM (2005) Geochemical and hydrogeological contrasts between shallow and deeper aquifers in two villages of Araihazar, Bangladesh: implications for deeper aquifers as drinking water sources. Geochim Cosmochim Acta 69:5203–5218

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Smedley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smedley, P.L., Kinniburgh, D.G. (2013). Arsenic in Groundwater and the Environment. In: Selinus, O. (eds) Essentials of Medical Geology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4375-5_12

Download citation

Publish with us

Policies and ethics