Skip to main content

Modified Transposases for Site-Directed Insertion of Transgenes

  • Chapter
  • First Online:
Site-directed insertion of transgenes

Part of the book series: Topics in Current Genetics ((TCG,volume 23))

Abstract

Cut and paste DNA transposons are widely used to stably integrate DNA into a wide variety of organisms. They can integrate DNA with high efficiency, provide long lasting expression of inserted transgenes, and avoid some of the safety concerns of viral gene delivery systems. One of the chief disadvantages of transposons for gene therapy and other gene delivery applications is that the site of insertion cannot be chosen. This can lead to poor expression of the integrated gene if it is inserted into a region of heterochromatin, or to undesirable insertional mutagenesis of the host cell if it integrates in an important gene. Three main strategies have been used to direct transposon insertions to specific locations: (1) modifying the transposase by fusing it to a DNA binding domain, (2) tethering the transposase protein to the desired target site, or (3) tethering the transposon DNA to the target site using appropriate fusion proteins. Here we review progress with these strategies in bacteria, fish, insect and mammalian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akopian A, Stark W (2005) Site-specific DNA recombinases as instruments for genomic surgery. Adv Genet 55:1–23

    Article  CAS  Google Scholar 

  • Augé-Gouillou C, Hamelin MH, Demattéi MV, Périquet M, Bigot Y (2001) The ITR binding domain of the Mariner Mos1 transposase. Mol Genet Genomics 265:58–65

    Article  Google Scholar 

  • Aye M, Irwin B, Beliakova-Bethell N, Chen E, Garrus J, Sandmeyer S (2004) Host factors that affect Ty3 retrotransposition in Saccharomyces cerevisiae. Genetics 168:1159–1176

    Article  CAS  Google Scholar 

  • Bessereau JL, Wright A, Williams DC, Schuske K, Davis MW, Jorgensen EM (2001) Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line. Nature 413:70–74

    Article  CAS  Google Scholar 

  • Bushman FD (2003) Targeting survival: integration site selection by retroviruses and LTR-retrotransposons. Cell 115:135–138

    Article  CAS  Google Scholar 

  • Carapuça E, Azzoni AR, Prazeres DM, Monteiro GA, Mergulhão FJ (2007) Time-course determination of plasmid content in eukaryotic and prokaryotic cells using real-time PCR. Mol Biotechnol 37:120–126

    Article  Google Scholar 

  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  CAS  Google Scholar 

  • Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, Shinn P, Ecker JR, Bushman F (2005) A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11:1287–1289

    Article  CAS  Google Scholar 

  • Ciuffi A, Diamond TL, Hwang Y, Marshall HM, Bushman FD (2006) Modulating target site selection during human immunodeficiency virus DNA integration in vitro with an engineered tethering factor. Hum Gene Ther 17:960–967

    Article  CAS  Google Scholar 

  • Copeland NG, Jenkins NA (2010) Harnessing transposons for cancer gene discovery. Nat Rev Cancer 10:696–706

    Article  CAS  Google Scholar 

  • Crénès G, Ivo D, Hérisson J, Dion S, Renault S, Bigot Y, Petit A (2009) The bacterial Tn9 chloramphenicol resistance gene: an attractive DNA segment for Mos1 mariner insertions. Mol Genet Genomics 281:315–328

    Article  Google Scholar 

  • Demattei MV, Thomas X, Carnus E, Augé-Gouillou C, Renault S (2010) Site-directed integration of transgenes: transposons revisited using DNA-binding-domain technologies. Genetica 138:531–540

    Article  CAS  Google Scholar 

  • Feng M, Zhou T, Wei W, Song Y, Tan R (2008) Tn5 transposase-assisted high-efficiency transformation of filamentous fungus Phoma herbarum YS4108. Appl Microbiol Biotechnol 80:937–944

    Article  CAS  Google Scholar 

  • Feng X, Bednarz AL, Colloms SD (2010) Precise targeted integration by a chimaeric transposase zinc-finger fusion protein. Nucleic Acids Res 38:1204–1216

    Article  CAS  Google Scholar 

  • Fraser MJ, Cary L, Boonvisudhi K, Wang HG (1995) Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virology 211:397–407

    Article  CAS  Google Scholar 

  • Goryshin IY, Reznikoff WS (1998) Tn5 in vitro transposition. J Biol Chem 273:7367–7374

    Article  CAS  Google Scholar 

  • Goryshin IY, Jendrisak J, Hoffman LM, Meis R, Reznikoff WS (2000) Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat Biotechnol 18:97–100

    Article  CAS  Google Scholar 

  • Goulaouic H, Chow SA (1996) Directed integration of viral DNA mediated by fusion proteins consisting of human immunodeficiency virus type 1 integrase and Escherichia coli LexA protein. J Virol 70:37–46

    CAS  Google Scholar 

  • Granger L, Martin E, Ségalat L (2004) Mos as a tool for genome-wide insertional mutagenesis in Caenorhabditis elegans: results of a pilot study. Nucleic Acids Res 32:e117

    Article  Google Scholar 

  • Guimond N, Bideshi DK, Pinkerton AC, Atkinson PW, O’Brochta DA (2003) Patterns of Hermes transposition in Drosophila melanogaster. Mol Genet Genomics 268:779–790

    CAS  Google Scholar 

  • Hama C, Ali Z, Kornberg TB (1990) Region-specific recombination and expression are directed by portions of the Drosophila engrailed promoter. Genes Dev 4:1079–1093

    Article  CAS  Google Scholar 

  • Imre A, Olasz F, Nagy B (2011) Site-directed (IS30-FljA) transposon mutagenesis system to produce nonflagellated mutants of Salmonella Enteritidis. FEMS Microbiol Lett 317:52–59

    Article  CAS  Google Scholar 

  • Ivics Z, Hackett PB, Plasterk RH, Izsvák Z (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 14:501–510

    Article  Google Scholar 

  • Ivics Z, Katzer A, Stüwe EE, Fiedler D, Knespel S, Izsvák Z (2007) Targeted Sleeping Beauty transposition in human cells. Mol Ther 15:1137–1144

    CAS  Google Scholar 

  • Izsvák Z, Khare D, Behlke J, Heinemann U, Plasterk RH, Ivics Z (2002) Involvement of a bifunctional, paired-like DNA-binding domain and a transpositional enhancer in Sleeping Beauty transposition. J Biol Chem 277:34581–34588

    Article  Google Scholar 

  • Izsvák Z, Hackett PB, Cooper LJ, Ivics Z (2010) Translating Sleeping Beauty transposition into cellular therapies: victories and challenges. Bioessays 3:756–767

    Article  Google Scholar 

  • Kassis JA, Noll E, VanSickle EP, Odenwald WF, Perrimon N (1992) Altering the insertional specificity of a Drosophila transposable element. Proc Natl Acad Sci USA 89:1919–1923

    Article  CAS  Google Scholar 

  • Katz RA, Merkel G, Skalka AM (1996) Targeting of retroviral integrase by fusion to a heterologous DNA binding domain: in vitro activities and incorporation of a fusion protein into viral particles. Virology 217:178–190

    Article  CAS  Google Scholar 

  • Keng VW, Yae K, Hayakawa T, Mizuno S, Uno Y, Yusa K, Kokubu C, Kinoshita T, Akagi K, Jenkins NA, Copeland NG, Horie K, Takeda J (2005) Region-specific saturation germline mutagenesis in mice using the Sleeping Beauty transposon system. Nat Methods 2:763–769

    Article  CAS  Google Scholar 

  • Kettlun C, Galvan DL, George AL Jr, Kaja A, Wilson MH (2011) Manipulating piggyBac transposon chromosomal integration site selection in human cells. Mol Ther 19:1636–1644

    Article  CAS  Google Scholar 

  • Klug A (2010) The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Q Rev Biophys 43:1–21

    Article  CAS  Google Scholar 

  • Kondrychyn I, Garcia-Lecea M, Emelyanov A, Parinov S, Korzh V (2009) Genome-wide analysis of Tol2 transposon reintegration in zebrafish. BMC Genomics 10:418–431

    Article  Google Scholar 

  • Lidholm D-A, Lohe AR, DL DL (1993) The transposable element mariner mediates germline transformation in Drosophila melanogaster. Genetics 134:859–868

    CAS  Google Scholar 

  • Liu X, Liu M, Xue Z, Pan Q, Wu L, Long Z, Xia K, Liang D, Xia J (2007) Non-viral ex vivo transduction of human hepatocyte cells to express factor VIII using a human ribosomal DNA-targeting vector. J Thromb Haemost 5:347–351

    Article  CAS  Google Scholar 

  • Maragathavally KJ, Kaminski JM, Coates CJ (2006) Chimaeric Mos1 and piggyBac transposases result in site-directed integration. FASEB J 20:1880–1882

    Article  CAS  Google Scholar 

  • McNamara AR, Ford KG (2000) A novel four zinc-finger protein targeted against p190(BcrAbl) fusion oncogene cDNA: utilisation of zinc-finger recognition codes. Nucleic Acids Res 28:4865–4872

    Article  CAS  Google Scholar 

  • O’Brochta DA, Handler AM (2008) Perspectives on the state of insect transgenics. Adv Exp Med Biol 627:1–18

    Article  Google Scholar 

  • Paatero AO, Turakainen H, Happonen LJ, Olsson C, Palomaki T, Pajunen MI, Meng X, Otonkoski T, Tuuri T, Berry C, Malani N, Frilander MJ, Bushman FD, Savilahti H (2008) Bacteriophage Mu integration in yeast and mammalian genomes. Nucleic Acids Res 36:e148

    Article  Google Scholar 

  • Palazzoli F, Carnus E, Wells DJ, Bigot Y (2008) Sustained transgene expression using non-viral enzymatic systems for stable chromosomal integration. Curr Gene Ther 8:367–390

    Article  CAS  Google Scholar 

  • Parker CT, Guard-Petter J (2001) Contribution of flagella and invasion proteins to pathogenesis of Salmonella enterica serovar enteritidis in chicks. FEMS Microbiol Lett 204:287–291

    Article  CAS  Google Scholar 

  • Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973

    Article  CAS  Google Scholar 

  • Préclin V, Martin E, Segalat L (2003) Target sequences of Tc1, Tc3 and Tc5 transposons of Caenorhabditis elegans. Genet Res 82:85–88

    Article  Google Scholar 

  • Reznikoff WS (2006) Tn5 transposition: a molecular tool for studying protein structure-function. Biochem Soc Trans 34:320–323

    Article  CAS  Google Scholar 

  • Richardson JM, Colloms SD, Finnegan DJ, Walkinshaw MD (2009) Molecular architecture of the Mos1 paired-end complex: the structural basis of DNA transposition in a eukaryote. Cell 138:1096–1108

    Article  CAS  Google Scholar 

  • Rubin EJ, Akerley BJ, Novik VN, Lampe DJ, Husson RN, Mekalanos JJ (1999) In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci USA 96:1645–1650

    Article  CAS  Google Scholar 

  • Ryder E, Russell S (2003) Transposable elements as tools for genomics and genetics in Drosophila. Brief Funct Genomic Proteomic 2:57–71

    Article  CAS  Google Scholar 

  • Sassetti CM, Boyd DH, Rubin EJ (2001) Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci USA 98:12712–12717

    Article  CAS  Google Scholar 

  • Schweidenback CT, Baker TA (2008) Dissecting the roles of MuB in Mu transposition: ATP regulation of DNA binding is not essential for target delivery. Proc Natl Acad Sci USA 105:12101–12107

    Article  CAS  Google Scholar 

  • Shi H, Wormsley S, Tschudi C, Ullu E (2002) Efficient transposition of preformed synaptic Tn5 complexes in Trypanosoma brucei. Mol Biochem Parasitol 121:141–144

    Article  CAS  Google Scholar 

  • Suster ML, Sumiyama K, Kawakami K (2009) Transposon-mediated BAC transgenesis in zebrafish and mice. BMC Genomics 10:477

    Article  Google Scholar 

  • Szabó M, Müller F, Kiss J, Balduf C, Strähle U, Olasz F (2003) Transposition and targeting of the prokaryotic mobile element IS30 in zebrafish. FEBS Lett 550:46–50

    Article  Google Scholar 

  • Tan W, Zhu K, Segal DJ, Barbas CF 3rd, Chow SA (2004) Fusion proteins consisting of human immunodeficiency virus type 1 integrase and the designed polydactyl zinc finger protein E2C direct integration of viral DNA into specific sites. J Virol 78:1301–1313

    Article  CAS  Google Scholar 

  • Tan W, Dong Z, Wilkinson TA, Barbas CF 3rd, Chow SA (2006) Human immunodeficiency virus type 1 incorporated with fusion proteins consisting of integrase and the designed polydactyl zinc finger protein E2C can bias integration of viral DNA into a predetermined chromosomal region in human cells. J Virol 80:1939–1948

    Article  CAS  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  Google Scholar 

  • van Luenen HG, Plasterk RH (1994) Target site choice of the related transposable elements Tc1 and Tc3 of Caenorhabditis elegans. Nucleic Acids Res 22:262–269

    Article  Google Scholar 

  • VandenDriessche T, Ivics Z, Izsvák Z, Chuah MK (2009) Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells. Blood 114:1461–1468

    Article  CAS  Google Scholar 

  • Vigdal TJ, Kaufman CD, Izsvák Z, Voytas DF, Ivics Z (2002) Common physical properties of DNA affecting target site selection of Sleeping beauty and other Tc1/mariner transposable elements. J Mol Biol 323:441–452

    Article  CAS  Google Scholar 

  • Walisko O, Schorn A, Rolfs F, Devaraj A, Miskey C, Izsvák Z, Ivics Z (2006) Transcriptional activities of the Sleeping Beauty transposon and shielding its genetic cargo with insulators. Mol Ther 16:359–369

    Article  Google Scholar 

  • Wang N, Jiang CY, Jiang MX, Zhang CX, Cheng JA (2010) Using chimaeric piggyBac transposase to achieve directed interplasmid transposition in silkworm Bombyx mori and fruit fly Drosophila cells. J Zhejiang Univ Sci B 11:728–734

    Article  CAS  Google Scholar 

  • Wilson MH, Kaminski JM, George AL Jr (2005) Functional zinc finger/sleeping beauty transposase chimaeras exhibit attenuated overproduction inhibition. FEBS Lett 579:6205–6209

    Article  CAS  Google Scholar 

  • Wong SM, Gawronski JD, Lapointe D, Akerley BJ (2011) High-throughput insertion tracking by deep sequencing for the analysis of bacterial pathogens. Methods Mol Biol 733:209–222

    Article  CAS  Google Scholar 

  • Wu SC, Meir YJ, Coates CJ, Handler AM, Pelczar P, Moisyadi S, Kaminski JM (2006) piggyBac is a flexible and highly active transposon as compared to Sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci USA 103:15008–15013

    Article  CAS  Google Scholar 

  • Yant SR, Huang Y, Akache B, Kay MA (2007) Site-directed transposon integration in human cells. Nucleic Acids Res 35:1–13

    Article  Google Scholar 

  • Zhu Y, Dai J, Fuerst PG, Voytas DF (2003) Controlling integration specificity of a yeast retrotransposon. Proc Natl Acad Sci USA 100:5891–5895

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvaine Renault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Colloms, S., Renault, S. (2013). Modified Transposases for Site-Directed Insertion of Transgenes. In: Renault, S., Duchateau, P. (eds) Site-directed insertion of transgenes. Topics in Current Genetics, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4531-5_9

Download citation

Publish with us

Policies and ethics