Skip to main content

Search for Low-Molecular-Weight Biomarkers in Plant Tissues and Seeds Using Metabolomics: Tools, Strategies, and Applications

  • Chapter
  • First Online:
Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield

Abstract

This chapter summarises the metabolomic strategies currently in force used in plant science and describes the methods used. The metabolite profiling and fingerprinting of plant tissues through MS- and/or NMR-based approaches and the subsequent identification of biomarkers is detailed. Strategies for the microisolation and de novo identification of unknown biomarkers are also discussed. The various approaches are illustrated by a metabolomic study of the maize response to herbivory. A review of recent metabolomic studies performed on seed and crop plant tissues involving various analytical strategies is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949

    Article  CAS  Google Scholar 

  • Allwood JW, Ellis DI, Goodacre R (2008) Metabolomic technologies and their application to the study of plants and plant-host interactions. Physiol Plant 132:117–135

    PubMed  CAS  Google Scholar 

  • Barros E, Lezar S, Anttonen MJ, Van Dijk JP, Röhlig RM, Kok EJ, Engel KH (2010) Comparison of two GM maize varieties with a near-isogenic non-GM variety using transcriptomics, proteomics and metabolomics. Plant Biotechnol J 8:436–451

    Article  PubMed  CAS  Google Scholar 

  • Boccard J, Veuthey JL, Rudaz S (2010) Knowledge discovery in metabolomics: an overview of MS data handling. J Sep Sci 33:290–304

    Article  PubMed  CAS  Google Scholar 

  • Bonnington LS, Barcelò D, Knepper TP (2003) Utilisation of electrospray time-of-flight mass spectrometry for solving complex fragmentation patterns: application to benzoxazinone derivatives. J Mass Spectrom 38:1054–1066

    Article  PubMed  CAS  Google Scholar 

  • Boroczky K, Laatsch H, Wagner-Dobler I, Stritzke K, Schulz S (2006) Cluster analysis as selection and dereplication tool for the identification of new natural compounds from large sample sets. Chem Biodiversity 3:622–634

    Article  Google Scholar 

  • Böttcher C, von Roepenack-Lahaye E, Schmidt J, Schmotz C, Neumann S, Scheel D, Clemens S (2008) Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis. Plant Physiol 147:2107–2120

    Article  PubMed  CAS  Google Scholar 

  • Brechenmacher L, Lei Z, Libault M, Findley S, Sugawara M, Sadowsky MJ, Sumner LW, Stacey G (2010) Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiol 153:1808–1822

    Article  PubMed  CAS  Google Scholar 

  • Brown WV (1960) The morphology of the grass embryo. Phytomorphology 10:215–223

    Google Scholar 

  • Brown SJ, Asai Y, Cordell HJ, Campbell LE, Zhao Y, Liao H, Northstone K, Henderson J, Alizadehfar R, Ben-Shoshan M, Morgan K, Roberts G, Masthoff LJ, Pasmans SG, van den Akker PC, Wijmenga C, Hourihane JO, Palmer CN, Lack G, Clarke A, Hull PR, Irvine AD, McLean WH (2011) Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol 127:661–667

    Google Scholar 

  • Browne RA, Brindle KM (2007) 1H NMR-based metabolite profiling as a potential selection tool for breeding passive resistance against Fusarium head blight (FHB) in wheat. Mol Plant Pathol 8:401–410

    Article  PubMed  CAS  Google Scholar 

  • Byrne PF, McMullen MD, Snook ME, Musket TA, Theuri JM, Widstrom NW, Wiseman BR, Coe EH (1996) Quantitative trait loci and metabolic pathways: genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks. Proc Natl Acad Sci U S A 93:8820–8825

    Article  PubMed  CAS  Google Scholar 

  • Chan ECY, Yap SL, Lau AJ, Leow PC, Toh DF, Koh HL (2007) Ultra-performance liquid chromatography/time-of-flight mass spectrometry based metabolomics of raw and steamed Panax notoginseng. Rapid Commun Mass Spectrom 21:519–528

    Article  PubMed  CAS  Google Scholar 

  • Charlton A, Donarski J, Harrison M, Jones S, Godward J, Oehlschlager S, Arques J, Ambrose M, Chinoy C, Mullineaux P, Domoney C (2008) Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy. Metabolomics 4:312–327

    Article  CAS  Google Scholar 

  • Choi YH, Kim HK, Linthorst HJM, Hollander JG, Lefeber AWM, Erkelens C, Nuzillard JM, Verpoorte R (2006) NMR metabolomics to revisit the tobacco mosaic virus infection in Nicotiana tabacum leaves. J Nat Prod 69:742–748

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun IJ (2007) Use of NMR for metabolic profiling in plant systems. J Pest Sci 32:200–212

    Article  CAS  Google Scholar 

  • Crockford DJ, Maher AD, Ahmadi KR, Barrett A, Plumb RS, Wilson ID, Nicholson JK (2008) 1H NMR and UPLC-MSE statistical heterospectroscopy: characterization of drug metabolites (Xenometabolome) in epidemiological studies. Anal Chem 80:6835–6844

    Article  PubMed  CAS  Google Scholar 

  • David F, Vanhoenacker G, Tienpont B, Francois I, Sandra P (2007) Coupling columns and multidimensional configurations to increase peak capacity in liquid chromatography. LCGC Europe 20:154–158

    CAS  Google Scholar 

  • Davies HV, Shepherd LVT, Stewart D, Frank T, Röhlig RM, Engel KH (2010) Metabolome variability in crop plant species—when, where, how much and so what? Regul Toxicol Pharmacol 58:S54–S61

    Article  PubMed  CAS  Google Scholar 

  • De Vos RCH, Moco S, Lommen A, Keurentjes JJB, Bino RJ, Hall RD (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protoc 2:778–791

    Article  PubMed  CAS  Google Scholar 

  • Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78

    Article  PubMed  CAS  Google Scholar 

  • Dinelli G, Segura Carretero A, Di Silvestro R, Marotti I, Fu S, Benedettelli S, Ghiselli L, Fernández Gutiérrez A (2009) Determination of phenolic compounds in modern and old varieties of durum wheat using liquid chromatography coupled with time-of-flight mass spectrometry. J Chromatogr A 1216:7229–7240

    Article  PubMed  CAS  Google Scholar 

  • Doerrer N, Ladics G, McClain S, Herouet-Guicheney C, Poulsen LK, Privalle L, Stagg N (2010) Evaluating biological variation in non-transgenic crops: executive summary from the ILSI Health and Environmental Sciences Institute workshop, November 16–17, 2009, Paris, France. Regul Toxicol Pharmacol 58:S2–S7

    Article  PubMed  Google Scholar 

  • Draper J, Enot DP, Parker D, Beckmann M, Snowdon S, Lin W, Zubair H (2009) Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour ‘rules’. BMC Bioinformatics 10:227

    Article  PubMed  Google Scholar 

  • Dubey S, Misra P, Dwivedi S, Chatterjee S, Bag S, Mantri S, Asif M, Rai A, Kumar S, Shri M, Tripathi P, Tripathi R, Trivedi P, Chakrabarty D, Tuli R (2010) Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress. BMC Genomics 11:648

    Article  PubMed  CAS  Google Scholar 

  • Ducruix C, Vailhen D, Werner E, Fievet JB, Bourguignon J, Tabet JC, Ezan E, Junot C (2008) Metabolomic investigation of the response of the model plant Arabidopsis thaliana to cadmium exposure: evaluation of data pretreatment methods for further statistical analyses. Chemom Intell Lab Syst 91:67–77

    Article  CAS  Google Scholar 

  • Dunn WB (2008) Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Phys Biol 5:011001

    Article  PubMed  CAS  Google Scholar 

  • Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL (2011) Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev 40:387–426

    Article  PubMed  CAS  Google Scholar 

  • Enfissi EMA, Barneche F, Ahmed I, Lichtlé C, Gerrish C, McQuinn RP, Giovannoni JJ, Lopez-Juez E, Bowler C, Bramley PM, Fraser PD (2010) Integrative transcript and metabolite analysis of nutritionally enhanced DE-ETIOLATED1 downregulated tomato fruit. Plant Cell 22:1190–1215

    Article  PubMed  CAS  Google Scholar 

  • Erb M, Flors V, Karlen D, de Lange E, Planchamp C, D’Alessandro M, Turlings TCJ, Ton J (2009) Signal signature of above ground-induced resistance upon below ground herbivory in maize. Plant J 59:292–302

    Article  PubMed  CAS  Google Scholar 

  • Erb M, Balmer D, De Lange ES, Von Merey G, Planchamp C, Robert CAM, Röder G, Sobhy I, Zwahlen C, Mauch-Mani B, Turlings TCJ (2011) Synergies and trade-offs between insect and pathogen resistance in maize leaves and roots. Plant Cell Environ 34:1088–1103

    Article  PubMed  CAS  Google Scholar 

  • Eugster PJ, Guillarme D, Rudaz S, Veuthey JL, Carrupt PA, Wolfender JL (2011) Ultra high pressure liquid chromatography for crude plant extracts profiling. J AOAC Int 94:51–70

    PubMed  CAS  Google Scholar 

  • Fait A, Hanhineva K, Beleggia R, Dai N, Rogachev I, Nikiforova VJ, Fernie AR, Aharoni A (2008) Reconfiguration of the achene and receptacle networks during strawberry fruit development. Plant Physiol 148:730–750

    Article  PubMed  CAS  Google Scholar 

  • Feng X, Siegel MM (2007) FTICR-MS applications for the structure determination of natural products. Anal Bioanal Chem 389:1341–1363

    Article  PubMed  CAS  Google Scholar 

  • Fernie AR, Schauer N (2009) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25:39–48

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O (2008) Extending the breadth of metabolite profiling by gas chromatography coupled to mass spectrometry. Trends Analyt Chem 27:261–269

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O, Sumner LW, Rhee SY, Ward J, Dickerson J, Lange BM, Lane G, Roessner U, Last R, Nikolau B (2007) Minimum reporting standards for plant biology context information in metabolomic studies. Metabolomics 3:195–201

    Article  CAS  Google Scholar 

  • Frank T, Nörenberg S, Engel KH (2009) Metabolite profiling of two novel low phytic acid (lpa) soybean mutants. J Agric Food Chem 57:6408–6416

    Article  PubMed  CAS  Google Scholar 

  • Frey M, Chomet P, Glawischnig E, Stettner C, Grun S, Winklmair A, Eisenreich W, Bacher A, Meeley RB, Briggs SP, Simcox K, Gierl A (1997) Analysis of a chemical plant defense mechanism in grasses. Science 277:696–699

    Article  PubMed  CAS  Google Scholar 

  • Fumagalli E, Baldoni E, Abbruscato P, Piffanelli P, Genga A, Lamanna R, Consonni R (2009) NMR techniques coupled with multivariate statistical analysis: tools to analyse Oryza sativa metabolic content under stress conditions. J Agr Crop Sci 195:77–88

    Article  CAS  Google Scholar 

  • García-Villalba R, León C, Dinelli G, Segura-Carretero A, Fernández-Gutiérrez A, Garcia-Cañas V, Cifuentes A (2008) Comparative metabolomic study of transgenic versus conventional soybean using capillary electrophoresis-time-of-flight spectrometry. J Chromatogr A 1195:164–173

    Article  PubMed  CAS  Google Scholar 

  • Gavaghan CL, Li JV, Hadfield ST, Hole S, Nicholson JK, Wilson ID, Howe PWA, Stanley PD, Holmes E (2011) Application of NMR-based metabolomics to the investigation of salt stress in maize (Zea mays). Phytochem Anal 22:214–224

    Article  PubMed  CAS  Google Scholar 

  • Gavaghan CL, Li JV, Hadfield ST, Hole S, Nicholson JK, Wilson ID, Howe PWA, Stanley PD, Holmes E (2011) Application of NMR-based metabolomics to the investigation of salt stress in maize (Zea mays). Phytochem Anal 22:214–224

    Article  PubMed  CAS  Google Scholar 

  • Glauser G, Guillarme D, Grata E, Boccard J, Thiocone A, Carrupt PA, Veuthey JL, Rudaz S, Wolfender JL (2008) Optimized liquid chromatography-mass spectrometry approach for the isolation of minor stress biomarkers in plant extracts and their identification by capillary nuclear magnetic resonance. J Chromatogr A 1180:90–98

    Article  PubMed  CAS  Google Scholar 

  • Goga-Remont S, Heinisch S, Rocca JL (2000) Use of optimization software to determine rugged analysis conditions in high-performance liquid chromatography. J Chromatogr A 868:13–29

    Article  PubMed  CAS  Google Scholar 

  • Goodacre R (2005) Making sense of the metabolome using evolutionary computation: seeing the wood with the trees. J Exp Bot 56:245–254

    Article  PubMed  CAS  Google Scholar 

  • Grata E, Boccard J, Guillarme D, Glauser G, Carrupt PA, Farmer E, Wolfender JL, Rudaz S (2008) UPLC–TOF-MS for plant metabolomics: a sequential approach for wound marker analysis in Arabidopsis thaliana. J Chromatogr B 871 261–270

    Article  CAS  Google Scholar 

  • Grata E, Guillarme D, Glauser G, Boccard J, Carrupt PA, Veuthey JL, Rudaz S, Wolfender JL (2009) Metabolite profiling of plant extracts by ultra-high-pressure liquid chromatography at elevated temperature coupled to time-of-flight mass spectrometry. J Chromatogr A 1216:5660–5668

    Article  PubMed  CAS  Google Scholar 

  • Guillarme D, Schappler J, Rudaz S, Veuthey JL (2010) Coupling ultra-high-pressure liquid chromatography with mass spectrometry. Trends Analyt Chem 29:15–27

    Article  CAS  Google Scholar 

  • Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK (2008a) Metabolomics of temperature stress. Physiol Plant 132:220–235

    CAS  Google Scholar 

  • Guy C, Kopka J, Moritz T (2008b) Plant metabolomics coming of age. Physiol Plant 132:113–116

    Article  CAS  Google Scholar 

  • Hall RD (2006) Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytol 169:453–468

    Article  PubMed  CAS  Google Scholar 

  • Hall RD, Brouwer ID, Fitzgerald MA (2008) Plant metabolomics and its potential application for human nutrition. Physiol Plant 132:162–175

    PubMed  CAS  Google Scholar 

  • Harrigan GG, Glenn KC, Ridley WP (2010) Assessing the natural variability in crop composition. Regul Toxicol Pharmacol 58:S13–S20

    Article  PubMed  Google Scholar 

  • Hegeman AD (2010) Plant metabolomics-meeting the analytical challenges of comprehensive metabolite analysis. Brief Funct Genomics 9:139–148

    Article  PubMed  CAS  Google Scholar 

  • Ioset JR, Urbaniak B, Ndjoko-Ioset K, Wirth J, Martin F, Gruissem W, Hostettmann K, Sautter C (2007) Flavonoid profiling among wild type and related GM wheat varieties. Plant Mol Biol 65:645–654

    Article  PubMed  CAS  Google Scholar 

  • Issaq HJ, Van QN, Waybright TJ, Muschik GM, Veenstra TD (2009) Analytical and statistical approaches to metabolomics research. J Sep Sci 32:2183–2199

    Article  PubMed  CAS  Google Scholar 

  • James C (2009) Global status of commercialized biotech/GM crops: 2009. ISAAA Brief No. 41. ISAAA, Ithaca

    Google Scholar 

  • Jansen JJ, Allwood JW, Marsden-Edwards E, Van Der Putten WH, Goodacre R, van Dam NM (2009) Metabolomic analysis of the interaction between plants and herbivores. Metabolomics 5:150–161

    Article  CAS  Google Scholar 

  • Jiao Z, Si XX, Li GK, Zhang ZM, Xu XP (2010) Unintended compositional changes in transgenic rice seeds (Oryza sativa L.) studied by spectral and chromatographic analysis coupled with chemometrics methods. J Agric Food Chem 58:1746–1754

    Article  PubMed  CAS  Google Scholar 

  • Jom KN, Frank T, Engel KH (2011) A metabolite profiling approach to follow the sprouting process of mung beans (Vigna radiata). Metabolomics 7:102–117

    Article  CAS  Google Scholar 

  • Katajamaa M, Oresic M (2007) Data processing for mass spectrometry-based metabolomics. J Chromatogr A 1158:318–328

    Article  PubMed  CAS  Google Scholar 

  • Keymanesh K, Darvishi MH, Sardari S (2009) Metabolome comparison of transgenic and non-transgenic rice by statistical analysis of FTIR and NMR Spectra. Rice Science 16:119–123

    Article  Google Scholar 

  • Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nat Protoc 5:536–549

    Article  PubMed  CAS  Google Scholar 

  • Kim HK, Choi YH, Verpoorte R (2011) NMR-based plant metabolomics: where do we stand, where do we go? Trends Biotechnol 29:267–275

    Article  PubMed  CAS  Google Scholar 

  • Kind T, Fiehn O (2007) Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8:105

    Article  PubMed  CAS  Google Scholar 

  • Kind T, Scholz M, Fiehn O (2009) How large is the metabolome? A critical analysis of data exchange practices in chemistry. PLoS One 4:e5440

    Google Scholar 

  • Kogel KH, Voll LM, Schäfer P, Jansen C, Wu Y, Langen G, Imani J, Hofmann J, Schmiedl A, Sonnewald S, von Wettstein D, Cook RJ, Sonnewald U (2010) Transcriptome and metabolome profiling of field-grown transgenic barley lack induced differences but show cultivar-specific variances. Proc Nat Acad Sci U S A 107:6198–6203

    Article  CAS  Google Scholar 

  • Korfmacher WA (2005) Principles and applications of LC-MS in new drug discovery. Drug Discov Today 10:1357–1367

    Article  PubMed  CAS  Google Scholar 

  • Kusano M, Redestig H, Hirai T, Oikawa A, Matsuda F, Fukushima A, Arita M, Watanabe S, Yano M, Hiwasa-Tanase K, Ezura H, Saito K (2011) Covering chemical diversity of genetically-modified tomatoes using metabolomics for objective substantial equivalence assessment. PLoS One 6:e16989

    Article  PubMed  CAS  Google Scholar 

  • Leon C, Rodriguez-Meizoso I, Lucio M, Garcia-Cañas V, Ibañez E, Schmitt-Kopplin P, Cifuentes A (2009) Metabolomics of transgenic maize combining Fourier transform-ion cyclotron resonance-mass spectrometry, capillary electrophoresis-mass spectrometry and pressurized liquid extraction. J Chromatogr A 1216:7314–7323

    Article  PubMed  CAS  Google Scholar 

  • Levandi T, Leon C, Kaljurand M, Garcia-Canas V, Cifuentes A (2008) Capillary electrophoresis time-of-flight mass spectrometry for comparative metabolomics of transgenic versus conventional maize. Anal Chem 80:6329–6335

    Article  PubMed  CAS  Google Scholar 

  • Li B, Morris AJ, Martin EB (2002) Orthogonal signal correction: algorithmic aspects and properties. J Chemometrics 16:556–561

    Article  CAS  Google Scholar 

  • Moing A, Aharoni A, Biais B, Rogachev I, Meir S, Brodsky L, Allwood JW, Erban A, Dunn WB, Kay L, de Koning S, de Vos RCH, Jonker H, Mumm R, Deborde C, Maucourt M, Bernillon S, Gibon Y, Hansen TH, Husted S, Goodacre R, Kopka J, Schjoerring JK, Rolin D, Hall RD (2011) Extensive metabolic cross-talk in melon fruit revealed by spatial and developmental combinatorial metabolomics. New Phytol 190:683–696

    Article  PubMed  CAS  Google Scholar 

  • Nguyen DTT, Guillarme D, Rudaz S, Veuthey JL (2006) Fast analysis in liquid chromatography using small particle size and high pressure. J Sep Sci 29:1836–1848

    Article  PubMed  CAS  Google Scholar 

  • Nováková L, Matysová L, Solich P (2006) Advantages of application of UPLC in pharmaceutical analysis. Talanta 68:908–918

    Article  PubMed  CAS  Google Scholar 

  • Nuessly GS, Scully BT, Hentz MG, Beiriger R, Snook ME, Widstrom NW (2007) Resistance to Spodoptera frugiperda (Lepidoptera: Noctuidae) and Euxesta stigmatias (Diptera: Ulidiidae) in sweet corn derived from exogenous and endogenous genetic systems. J Econ Entomol 100:1887–1895

    Article  PubMed  CAS  Google Scholar 

  • Okuda S, Yamada T, Hamajima M, Itoh M, Katayama T, Bork P, Goto S, Kanehisa M (2008) KEGG Atlas mapping for global analysis of metabolic pathways. Nucl Acids Res 36:W423–W426

    Article  PubMed  CAS  Google Scholar 

  • Rochfort S (2005) Metabolomics reviewed: a new “Omics” platform technology for systems biology and implications for natural products research. J Nat Prod 68:1813–1820

    Article  PubMed  CAS  Google Scholar 

  • Roessner-Tunali U, Hegemann B, Lytovchenko A, Carrari F, Bruedigam C, Granot D, Fernie AR (2003) Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol 133:84–99

    Article  PubMed  CAS  Google Scholar 

  • Rohlig RM, Eder J, Engel KH (2009) Metabolite profiling of maize grain: differentiation due to genetics and environment. Metabolomics 5:459–477

    Article  CAS  Google Scholar 

  • Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61:463–489

    Article  PubMed  CAS  Google Scholar 

  • Sana TR, Fischer S, Wohlgemuth G, Katrekar A, Jung KH, Ronald PC, Fiehn O (2010) Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogen Xanthomonas oryzae pv. oryzae. Metabolomics 6:451–465

    Article  PubMed  CAS  Google Scholar 

  • Sanchez DH, Pieckenstain FL, Escaray F, Erban A, Kraemer U, Udvardi MK, Kopka J (2011) Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis. Plant Cell Environ 34:605–617

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Akiyama K, Sakata A, Kuwahara A, Otsuki H, Sakurai T, Saito K, Hirai MY (2009) Widely targeted metabolomics based on large-scale MS/MS data for elucidating metabolite accumulation patterns in plants. Plant Cell Physiol 50:37–47

    Article  PubMed  CAS  Google Scholar 

  • Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes MG, Willmitzer L, Fernie AR, Kopka J (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett 579:1332–1337

    Article  PubMed  CAS  Google Scholar 

  • Shepherd L, Alexander C, Sungurtas J, McNicol J, Stewart D, Davies H (2010) Metabolomic analysis of the potato tuber life cycle. Metabolomics 6:274–291

    Article  CAS  Google Scholar 

  • Shu XL, Frank T, Shu QY, Engel KR (2008) Metabolite profiling of germinating rice seeds. J Agric Food Chem 56:11612–11620

    Article  PubMed  CAS  Google Scholar 

  • Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208

    Article  PubMed  CAS  Google Scholar 

  • Sicker D, Schulz M (2002) Benzoxazinones in plants: occurrence, synthetic access, and biological activity. In: Rahman Au (ed) Studies in natural products chemistry 27. Elsevier, Amsterdam, pp 185–232

    Google Scholar 

  • Son HS, Hwang GS, Kim KM, Ahn HJ, Park WM, Van Den Berg F, Hong YS, Lee CH (2009) Metabolomic studies on geographical grapes and their wines using H-1 NMR analysis coupled with multivariate statistics. J Agric Food Chem 57:1481–1490

    Article  PubMed  CAS  Google Scholar 

  • Stamova B, Roessner U, Suren S, Laudencia-Chingcuanco D, Bacic A, Beckles D (2009) Metabolic profiling of transgenic wheat over-expressing the high-molecular-weight Dx5 glutenin subunit. Metabolomics 5:239–252

    Article  CAS  Google Scholar 

  • Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics:large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836

    Article  PubMed  CAS  Google Scholar 

  • t’Kindt R, Morreel K, Deforce D, Boerjan W, Van Bocxlaer J (2009) Joint GC-MS and LC-MS platforms for comprehensive plant metabolomics: repeatability and sample pre-treatment. J Chromatogr B 877:3572–3580

    Article  CAS  Google Scholar 

  • Thissen U, Coulier L, Overkamp KM, Jetten J, Van Der Werff BJC, van de Ven T, Van Der Werf MJ (2011) A proper metabolomics strategy supports efficient food quality improvement: a case study on tomato sensory properties. Food Qual Prefer 22:499–506

    Article  Google Scholar 

  • Thompson R, Burstin J, Gallardo K (2009) Post-genomics studies of developmental processes in legume seeds. Plant Physiol 151:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Tiziani S, Lodi A, Ludwig C, Parsons HM, Viant MR (2008) Effects of the application of different window functions and projection methods on processing of 1H J-resolved nuclear magnetic resonance spectra for metabolomics. Anal Chim Acta 610:80–88

    Article  PubMed  CAS  Google Scholar 

  • Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6:469–479

    Article  PubMed  CAS  Google Scholar 

  • Turlings TCJ, Tumlinson JH (1992) Systemic release of chemical signals by herbivore-injured corn. Proc Natl Acad Sci USA 89:8399–8402

    Article  PubMed  CAS  Google Scholar 

  • Urich-Merzenich G, Zeitler H, Jobst D, Panek D, Vetter H, Wagner H (2007) Application of the “-omic-” technologies in phytomedicine. Phytomedicine 14:70–82

    Article  CAS  Google Scholar 

  • Van Der Hooft JJJ, Vervoort J, Bino RJ, Beekwilder J, de Vos RCH (2011) Polyphenol identification based on systematic and robust high-resolution accurate mass spectrometry fragmentation. Anal Chem 83:409–416

    Article  PubMed  CAS  Google Scholar 

  • Van Der Kooy F, Maltese F, Hae Choi Y, Kyong Kim H, Verpoorte R (2009) Quality control of herbal material and phytopharmaceuticals with MS and NMR based metabolic fingerprinting. Planta Med 75:763–775

    Article  PubMed  CAS  Google Scholar 

  • Verpoorte R, Choi Y, Kim H 2007 NMR-based metabolomics at work in phytochemistry. Phytochem Rev 6:3–14

    Article  CAS  Google Scholar 

  • Vigeolas H, Chinoy C, Zuther E, Blessington B, Geigenberger P, Domoney C 2008 Combined metabolomic and genetic approaches reveal a link between the polyamine pathway and albumin 2 in developing pea seeds. Plant Physiol 146:74–82

    Article  PubMed  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M. 2008 Trichoderma-plant-pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Vlahov G, Del Re P, Simone N (2003) Determination of geographical origin of olive oils using 13C nuclear magnetic resonance spectroscopy. I—Classification of olive oils of the Puglia region with denomination of protected origin. J Agric Food Chem 51:5612–5615

    Article  PubMed  CAS  Google Scholar 

  • Wahyuni Y, Ballester AR, Sudarmonowati E, Bino RJ, Bovy AG (2011) Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: variation in health-related compounds and implications for breeding. Phytochemistry 72:1358–1370

    Article  PubMed  CAS  Google Scholar 

  • Waridel P, Wolfender J-L, Ndjoko K, Hobby KR, Major HJ, Hostettmann K (2001) Evaluation of quadrupole time-of-flight tandem mass spectrometry and ion-trap multiple-stage mass spectrometry for the differentiation of C-glycosidic flavonoid isomers. J Chromatogr A 926:29–41

    Article  PubMed  CAS  Google Scholar 

  • Webb AG (2005) Microcoil nuclear magnetic resonance spectroscopy. J Pharm Biomed Anal 38:892–903

    Article  PubMed  CAS  Google Scholar 

  • Widodo, Patterson JH, Newbigin E, Tester M, Bacic A, Roessner U (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 60:4089–4103

    Article  PubMed  CAS  Google Scholar 

  • Wilson ID, Nicholson JK, Castro-Perez J, Granger JH, Johnson KA, Smith BW, Plumb RS (2005) High resolution "ultra performance" liquid chromatography coupled to TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J Proteome Res 4:591–598

    Article  PubMed  CAS  Google Scholar 

  • Wishart DS. (2008) Quantitative metabolomics using NMR. Trends Analyt Chem 27:228–237

    Article  CAS  Google Scholar 

  • Wolfender JL (2010) LC-NMR and related techniques for the rapid identification of plant metabolites. In: Waksmundzka-Hajnos M, Sherma J (eds) High performance liquid chromatography in phytochemical analysis. CRC Press, Taylor and Francis, Boca Raton, pp 287–330

    Chapter  Google Scholar 

  • Wolfender JL, Queiroz EF, Hostettmann K (2005) Phytochemistry in the microgram domain—a LC-NMR perspective. Magn Reson Chem 43:697–709

    Article  PubMed  CAS  Google Scholar 

  • Wolfender JL, Marti G, Queiroz EF (2010) Advances in techniques for profiling crude extracts and for the rapid identification of natural products: dereplication, quality control and metabolomics. Curr Org Chem 14:1808–1832

    Article  CAS  Google Scholar 

  • Wolfender JL, Eugster PJ, Bohni N, Cuendet M (2011) Advanced methods for natural product drug discovery in the field of nutraceuticals. CHIMIA Intl J Chem 65:400–406

    Article  CAS  Google Scholar 

  • Wren SAC, Tchelitcheff P (2006) Use of ultra-performance liquid chromatography in pharmaceutical development. J Chromatogr A 1119:140–146

    Article  PubMed  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Saito K (2009) Functional genomics for plant natural product biosynthesis. Nat Prod Rep 26:1466–1487

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Ma C, Xu H, Yuan K, Lu X, Zhu Z, Wu Y, Xu G (2009) Metabolic profiling of transgenic rice with cryIAc and sck genes: an evaluation of unintended effects at metabolic level by using GC-FID and GC-MS. J Chromatogr B 877:725–732

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Swiss National Science Foundation (Grant no. 205320_135190/1 to J-L.W.). The work was also supported by the National Centre of Competence in Research (NCCR) Plant Survival, a research program of the Swiss National Science Foundation, as well as by an IPP project from the SystemsX.ch initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Wolfender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marti, G., Erb, M., Rudaz, S., Turlings, T., Wolfender, JL. (2012). Search for Low-Molecular-Weight Biomarkers in Plant Tissues and Seeds Using Metabolomics: Tools, Strategies, and Applications. In: Agrawal, G., Rakwal, R. (eds) Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4749-4_16

Download citation

Publish with us

Policies and ethics