Skip to main content

Environment Assisted Cracking

  • Chapter
  • First Online:
Mechanical Behaviour of Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 191))

Abstract

Hydrogen embrittlement is due to the introduction of hydrogen either from a gaseous or from a liquid environment. The solubility of hydrogen in iron is temperature dependent. So is the diffusion. At low temperatures traps control the diffusion of hydrogen. Supersaturation of hydrogen results in the precipitation of cavities. The modification of the surface energy results in hydrogen enhanced decohesion; its interaction with dislocations in hydrogen enhanced local plasticity. Crack propagation takes place above a stress intensity factor threshold. When it is high enough stress-independent crack propagation is controlled by the diffusion of hydrogen. Embrittlement of hydride forming metals is due to the brittleness of the hydrides. Stress corrosion cracking initiation and propagation depend on anodic dissolution and cathodic hydrogen introduction. This interacts with slip mechanisms. Crack propagation stops below a critical stress intensity factor threshold. It becomes stress independent at higher levels of stress intensity factor. Similar mechanisms are responsible for corrosion fatigue. The cases of long and of short cracks are distinguished. Liquid metal induced embrittlement is due to modification of the surface energy. Liquid embrittling metals also reduce the cohesion energy and the core energy of dislocations. The same embrittling metals are active in the solid state resulting in solid metal induced embrittlement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Svante August Arrhenius (1859–1927) was a Swedish chemist who won the Nobel Prize in 1903.

  2. 2.

    Pierre Curie (1859–1906) was a French physicist winner of the Nobel Prize with his wife Marie Curie in 1903.

  3. 3.

    Piotr Alexandrovitch Rehbinder (1898–1972) was a Russian physico-chemist. He discovered the “Rehbinder effect” in 1928.

References

  • ABAQUS (2008) User’s manual version 6.8. Dassault System Simulia Co., Providence RI USA

    Google Scholar 

  • Abraham DP, Altstetter CJ (1995) Hydrogen-enhanced localization of plasticity in an austenitic stainless steel. Metall Mater Trans A 26A:2859–2871

    Article  Google Scholar 

  • Amzallag C, Mayonobe B, Rabbe P (1981) A strain controlled technique for assessing the corrosion-fatigue sensitivity of stainless steels. In: Electrochemical corrosion testing. ASTM-STP 727, ASTM Philadelphia, pp 69–83

    Google Scholar 

  • Anderson PM, Wang JS, Rice JR (1990) Thermodynamic and mechanical models of interfacial embrittlement. In: Olson GB, Azrin M, Wright ES (eds) Innovations in ultrahigh-strength steel technology. Proceedings of the 34th Sagamore army materials research conference, pp 619–649

    Google Scholar 

  • ASM International. Handbook committee (2002) ASM handbook, vol 11: Failure analysis and prevention, pp 861–867

    Google Scholar 

  • Auger T, Lorang G, Guérin S, Pastol J-L, Gorse D (2004) Effect of contact conditions on the embrittlement of T91 steel by lead-bismuth. J Nucl Mater 335:227–231

    Article  Google Scholar 

  • Barnoush A, Vehoff H (2008) In situ electrochemical nanoindentation: a technique for local examination of hydrogen embrittlement. Corros Sci 50:259–267

    Article  Google Scholar 

  • Beachem CD (1972) A new model for hydrogen assisted cracking (hydrogen embrittlement). Metall Trans 3:437–451

    Article  Google Scholar 

  • Birnbaum HK (1990) In: Gangloff RP, Ives MB (eds) Environmental induced cracking of metals. NACE, Huston, pp 21–29

    Google Scholar 

  • Bradshaw FJ (1967) The effect of gaseous environment on fatigue crack propagation. Scrip Metall 1:41–43

    Article  Google Scholar 

  • Briant CL, Hall EL (1987) The microstructural causes of intergranular corrosion of alloys 82 and 182. Corrosion 43:539–548

    Article  Google Scholar 

  • Combrade P, Magnin T (2002) Fissuration assistée par l’environnement. In: Béranger G, Mazille H (eds) Corrosion des métaux et alliages: mécanismes et phénomènes. Hermes, Paris, pp 229–258

    Google Scholar 

  • Coudreuse L, Bocquet P (1995) In: Turnbull A (ed) Hydrogen transport and cracking in metals. Cambridge University Press, Cambridge, pp 227–252

    Google Scholar 

  • Dawson DB, Pelloux R (1974) Corrosion fatigue crack growth of Ti alloys in aqueous environment. Metall Trans A 5:723–731

    Article  Google Scholar 

  • Delafosse D, Magnin T (2001) Hydrogen induced plasticity in stress corrosion cracking of engineering systems. Eng Fract Mech 68:693–729

    Article  Google Scholar 

  • Dietzel W, Schwalbe KH, Wu D (1989) Application of fracture mechanics techniques to the environmentally assisted cracking of aluminium 2024. Fatigue Fract Eng Mater Struc 12:495–510

    Article  Google Scholar 

  • Domain C, Besson R, Legris A (2004) Atomic-scale ab initio study of the Zr-H system: II Interaction of H with plane defects and mechanical properties. Acta Mater 52:1495–1502

    Article  Google Scholar 

  • Fager DN, Spurr WF (1970) Solid cadmium embrittlement: titanium alloys. Corrosion 26:409–419

    Google Scholar 

  • Fager DN, Spurr WF (1971) Solid cadmium embrittlement: steel alloys. Corrosion 27:72–76

    Google Scholar 

  • Falkenberg R, Brocks W, Dietzel W, Scheider E (2010) Modelling the effect of hydrogen on ductile tearing resistance of steels. Int J Mater Res 101:989–996

    Article  Google Scholar 

  • Ferreira PJ, Robertson IM, Birnbaum HK (1998) Hydrogen effects on the interaction between dislocations. Acta Mater 46:1744–1757

    Google Scholar 

  • Flanagan WF, Bastias P, Lichter BD (1991) A theory of stress corrosion cracking. Acta Metall Mater 39:695–705

    Article  Google Scholar 

  • Ford FP (1984) Environmentally assisted crack growth in austenitic stainless steels. In: Gangloff RP (ed) Embrittlement by the localised crack environment. TMS-AIME, Warrendale, pp 117–147

    Google Scholar 

  • Ford FP (1992) Slip dissolution model. In: Desjardin D, Oltra R (eds) Corrosion sous contrainte: phénoménologie et mécanismes. Editions de physique, Les Ulis, pp 833–864

    Google Scholar 

  • Galvele JR (1993) Surface mobility mechanism of stress corrosion cracking. In: Magnin T, Gras JM (eds) Corrosion-deformation interaction CDI’92. Editions de Physique, Les Ulis, pp 83–91

    Google Scholar 

  • Gangloff RP (1985) Crack size effect of the chemical driving force for aqueous corrosion fatigue. Metall Trans A 16:953–969

    Article  Google Scholar 

  • Gangloff RP (2003) Hydrogen assisted cracking of high strength alloys. In: Milne I et al (eds) Comprehensive structural integrity, vol 6. Elsevier, New York, pp 31–101

    Chapter  Google Scholar 

  • Gangloff RP, Wei RP (1977) Gaseous hydrogen embrittlement of high strength steels. Metall Trans A 8A:1043–1053

    Google Scholar 

  • Gao X (2005) Displacement burst and hydrogen effect during loading and holding in nanoindentation of iron single crystal. Scrip Mater 53:1315–1320

    Article  Google Scholar 

  • Grabke HJ, Riecke E (2000) Absorption and diffusion of hydrogen in steels. Mater Technol 34:331–342

    Google Scholar 

  • Guillot Y, Béranger G (2009) Fissuration favorisée par l’environnement. In: Clavel M, Bompard Ph (eds) Endommagement et rupture des matériaux. Lavoisier, Paris, pp 207–266

    Google Scholar 

  • Hirth JP (1980) Effects of hydrogen on the properties of iron and steel. Metall Trans A 11A:861–890

    Google Scholar 

  • Hirth JP, Rice JR (1980) On the thermodynamics of adsorption at interfaces as it influences decohesion. Metall Trans 11A:1501–1511

    Google Scholar 

  • Interrante CG, Raymond L (2005) In: Baboian R (ed) Corrosion tests and standards: application and interpretation, 27. ASTM Publication, West Conshohocken, p 272

    Google Scholar 

  • Jing-Zhi Yu, Sun Q, Wang Q, Kawazoe Y (1999) Theoretical study of hydrogen solubility in Fe, Co and Ni. Mater Trans JIM 40:855–858

    Google Scholar 

  • Kerns JE, Wang MT, Staehle RW (1977) In: Staehle RW (eds) Stress corrosion cracking and hydrogen embrittlement of iron-based alloys. NACE, Houston, pp 700–735

    Google Scholar 

  • Kirchheim R (2010) Revisiting hydrogen embrittlement models and hydrogen-induced homogeneous nucleation of dislocations. Scrip Mater 62:67–70

    Article  Google Scholar 

  • Kondo Y (1989) Prediction of fatigue crack initiation life based on pit growth. Corrosion 45:7–11

    Article  Google Scholar 

  • Krom AHM, Bakker A, Koers RWJ (1997) Modelling hydrogen-induced cracking in steel using a coupled diffusion stress finite element analysis. Int J Press Vessel Pip 72:139–147

    Article  Google Scholar 

  • Krom AHM, Maier HJ, Koers RWJ, Bakker A (1999) The effect of strain rate on hydrogen distribution in round tensile specimens. Mater Sci Eng A271:22–30

    Google Scholar 

  • Lépinoux J, Magnin T (1993) Stress corrosion microcleavage in a ductile fcc alloy. Mater Sci Eng A164:266–269

    Google Scholar 

  • Leblond J-B, Dubois D (1983) A general mathematical description of hydrogen diffusion in steels. I. Derivation of diffusion equations from Boltzmann-type transport equations. Acta Metall 31:1459–1469

    Article  Google Scholar 

  • Li QK, Zhang Y, Shi SQ, Wu YC (2002) Molecular dynamics simulation of dealloyed layer-enhanced dislocation emission and crack propagation. Mater Lett 56:927–932

    Article  Google Scholar 

  • Lu H, Gao KW, Chu WY (1998) Determination of tensile stress induced by dezincification layer during corrosion in brass. Corros Sci 40:1663–1670

    Article  Google Scholar 

  • Lu H, Gao KW, Wang YB, Chu WY (2000) Stress corrosion cracking caused by passive film induced tensile stress. Corrosion 56:1112–1118

    Article  Google Scholar 

  • Lynch SP (1989) Solid-metal-induced embrittlement of aluminium alloys and other materials. Mater Sci Eng A108:203–212

    Google Scholar 

  • Lynch SP (2003) Mechanisms of hydrogen assisted cracking: a review. In: Moody NR et al (eds) Hydrogen effects on materials behavior and corrosion deformation interactions. TMS, Warrendale, pp 449–466

    Google Scholar 

  • Lynn JC, Warke WR, Gordon P (1975) Solid metal-induced embrittlement of steel. Mater Sci Eng 18:51–62

    Article  Google Scholar 

  • Magnin T, Rieux P (1987) The relation between corrosion fatigue and stress corrosion cracking in Al-ZN-Mg alloys. Scrip Metall 21:907–911

    Article  Google Scholar 

  • Magnin T, Chieragatti R, Oltra R (1990) Mechanism of brittle fracture in a ductile 316 alloy during stress corrosion. Acta Metall Mater 38:1313–1319

    Article  Google Scholar 

  • Magnin T, Chambreuil A, Bayle B (1994) The corrosion enhanced plasticity model for stress corrosion cracking in ductile fcc alloys. Acta Mater 44:1457–1470

    Article  Google Scholar 

  • Marié N, Wolski K, Biscondi M (2000) Grain boundary penetration of nickel by liquid bismuth as a film of nanometric thickness. Scrip Mater 43:943–949

    Article  Google Scholar 

  • McIlree AR, Michels HT (1977) Stress corrosion behavior of Fe-Cr-Ni and other alloys in high temperature caustic solutions. Corrosion 33:60–67

    Google Scholar 

  • McNabb A, Foster PK (1963) A new analysis of diffusion in iron and ferritic steels. J Trans Metall Soc AIME 227:618–627

    Google Scholar 

  • Mendez J, Violan P (1988) Modification in fatigue damage processes induced by atmospheric environment in polycrystalline copper. In: Basic questions in fatigue. ASTM STP 924, pp 196–210

    Google Scholar 

  • Mutombo K, du Toit M (2011) Corrosion fatigue behaviour of aluminium 5083-H111 welded gas metal arc welding method. In Tech Open Rijeka Croatia:177–208

    Google Scholar 

  • Nam HS, Srolovitz DJ (2009) Effect of material properties on liquid metal embrittlement in the Al-Ga system. Acta Mater 57:1546–1553

    Article  Google Scholar 

  • Old CF, Travena P (1979) Liquid metal embrittlement of aluminium single crystal by gallium. Metal Sci 13:591–596

    Article  Google Scholar 

  • Oriani RA (1972) Hydrogen embrittlement of steels. Annu Rev Mater Sci 8:327–357

    Article  Google Scholar 

  • Parkins RN (1979) Environment sensitive fracture and its prevention. Br Corros J 14:5–14

    Article  Google Scholar 

  • Parkins RN (1992) Environment sensitive fracture of metals. Can Metall Quat 2:79–94

    Article  Google Scholar 

  • Pelloux R, Genkin JM (2010) Corrosion fatigue. In: Bathias C, Pineau A (eds) Fatigue of materials and structures. Wiley, Hoboken, pp 377–399

    Google Scholar 

  • Pereiro-Lopez E, Ludwig W, Bellet D, Baruchel J (2003) Grain boundary liquid metal wetting: a synchrotron micro-radiographic investigation. Nucl Instrum Method Phys Res B200:333–338

    Article  Google Scholar 

  • Pereiro-Lopez E, Ludwig W, Bellet D (2005) In-situ investigation of liquid Ga penetration in Al bicrystal grain boundaries: grain boundary wetting or liquid metal embrittlement. Acta Mater 53:151–162

    Article  Google Scholar 

  • Pereiro-Lopez E, Ludwig W, Bellet D, Lemaignan C (2006) In-situ investigation of Al bicrystal embrittlement by liquid Ga using synchrotron imaging. Acta Mater 54:4307–4316

    Article  Google Scholar 

  • Petit J (1999) Influence of environment on small fatigue crack growth. In: Ravichandran KS, Ritchie RO, Murakami Y (eds) Small fatigue cracks. Elsevier, Oxford, pp 167–178

    Google Scholar 

  • Petit J, Sarrazin-Baudoux C (2010) Effect of environment. In: Bathias C, Pineau A (eds) Fatigue of materials and structures. Wiley, Hoboken, pp 400–455

    Google Scholar 

  • Piasick RS (1994) The growth of small corrosion fatigue cracks in alloy 2024. Fatigue Frac Eng Mater Struc 17:1247–1260

    Article  Google Scholar 

  • Pressouyre GM (1983) Hydrogen traps, repellers and obstacles in steel: consequences on hydrogen diffusion, solubility and embrittlement. Metall Trans A 14A:2189–2193

    Google Scholar 

  • Pressouyre GM, Bernstein IM (1978) A quantitative analysis of hydrogen trapping. Metall Trans 9A:1571–1580

    Google Scholar 

  • Psiachos D, Hammerschmidt T, Drautz R (2011) Ab initio study of the modification of elastic properties of α-iron by hydrostatic strain and by hydrogen interstitials. Acta Mater 59:4255–4663

    Article  Google Scholar 

  • Rebière M, Magnin T (1990) Corrosion fatigue mechanisms of an 8090 AL-Li-Cu alloy. Mater Sci Eng A 128:99–106

    Article  Google Scholar 

  • Rice JR (1976) Hydrogen and interfacial decohesion. In: Thompson AW, Bernstein IM (eds) Effect of hydrogen on behavior of materials. Metallurgical Society of AIME, New York, pp 455–466

    Google Scholar 

  • Rice JR, Wang JS (1989) Embrittlement of interfaces by solute segregation. Mater Sci Eng A 107:23–40

    Article  Google Scholar 

  • Rie KT, Klingelh H (1993) High temperature low cycle fatigue in flue gas atmosphere. In: Magnin T, Gras JM (eds) Corrosion-deformation interactions CDI 92. Editions de Physique, Les Ulis, pp 493–501

    Google Scholar 

  • Rostoker W, McCaughey JM, Markus H (1960) Embrittlement by liquid metals. Reinhold, New York

    Google Scholar 

  • Roth MC, Weatherly GC, Miller WA (1980) The temperature dependence of the mechanical properties of aluminium alloys containing low-melting point inclusions. Acta Metall 28:841–853

    Article  Google Scholar 

  • Schuster I, Lemaignan C (1989) Characterisation of zircaloy corrosion fatigue phenomena in an iodine environment Part I: Crack growth. J Nucl Mater 166:348–356

    Article  Google Scholar 

  • Sieradzki K, Newman RC (1985) Brittle behaviour of ductile metals during stress corrosion cracking. Philos Mag A51:95–132

    Google Scholar 

  • Sirois E, Birnbaum HK (1992) Effects of hydrogen and carbon on thermally activated deformation in nickel. Acta Metall Mater 40:1377–1385

    Article  Google Scholar 

  • Sofronis P, Robertson IM (2002) Transmission electron microscopy observations and micromechanical-continuum models for the effect of hydrogen on the mechanical behaviour of metals. Philos Mag 82:3405–3413

    Article  Google Scholar 

  • Somerday BP (1998) Metallurgical and crack tip mechanics effects on environment assisted cracking of beta titanium alloys in aqueous chloride. PhD dissertation U of Virginia Charlottesville VA

    Google Scholar 

  • Speidel MO (1975) Stress corrosion cracking of aluminium alloys. Metall Trans A 6A:631–651

    Google Scholar 

  • Speidel MO (1977) Stress corrosion crack growth in austenitic stainless steels. Corrosion 33:199–203

    Google Scholar 

  • Speidel MO (1981) Stress corrosion cracking of stainless steel in NaCl solutions. Metall Trans 12A:779–789

    Google Scholar 

  • Tetelman AS, Robertson WD (1963) Direct observation and analysis of crack propagation in iron-3.5% silicon single crystal. Acta Metall 11:415–426

    Article  Google Scholar 

  • Troiano AR (1960) The role of hydrogen and other interstitials in the mechanical behavior of metals. Trans ASM 52:54–80

    Google Scholar 

  • Udagawa Y, Yamagachi M, Abe H, Sekimura N, Fuketa T (2010) Ab initio study of plane defects in zirconium-hydrogen solid solution and zirconium hydride. Acta Mater 58:3927–3938

    Article  Google Scholar 

  • von Pezold J, Lymperakis L, Neugebeauer J (2011) Hydrogen-enhanced local plasticity at dilute H concentrations: the role of H–H interactions and the formation of local hydrides. Acta Mater 59:2969–2980

    Article  Google Scholar 

  • Wei RP (1981) Rate controlling processes and crack growth response. In: Bernstein IM, Thompson AW (eds) Hydrogen effects in metals. TMS, Warrendale, pp 677–689

    Google Scholar 

  • Xie JH, Alpas AT, Northwood DO (2002) A mechanism for the crack initiation of corrosion fatigue of Type 316L stainless steel in Hank’s solution. Mater Charact 48:271–277

    Article  Google Scholar 

  • Zapffe CA, Sims CE (1941) Hydrogen embrittlement, internal stress and defects in steel. Trans AIME 145:225–261

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

François, D., Pineau, A., Zaoui, A. (2013). Environment Assisted Cracking. In: Mechanical Behaviour of Materials. Solid Mechanics and Its Applications, vol 191. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4930-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4930-6_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4929-0

  • Online ISBN: 978-94-007-4930-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics