Skip to main content

Efficient Numerical Schemes for Simulation and Optimization of Turbulent Reactive Flows

  • Chapter
  • First Online:
Flow and Combustion in Advanced Gas Turbine Combustors

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 1581))

  • 4523 Accesses

Abstract

An approach for the efficient simulation and optimization of turbulent reactive flow problems is presented. A gradient-based optimization strategy is employed involving a parallel multigrid solver for the flow and sensitivity equations. The geometry variation is realized using NURBS surfaces providing a large scale of possible deformations with a small number of design variables. The sensitivity-based computation of the gradient of the objective function is systematically verified by comparisons with finite-difference approximations. The efficiency of the multigrid method and the parallelization is investigated. The functionality of the optimization approach is illustrated by results for representative test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Durst, F., Schäfer, M.: A parallel block-structured multigrid method for the prediction of incompressible flows. Int. J. Numer. Methods Fluids 22, 549–565 (1996)

    Article  MATH  Google Scholar 

  2. Harth, Z., Sun, H., Schäfer, M.: Comparison of derivative free Newton-based and evolutionary methods for shape optimization of flow problems. Int. J. Numer. Methods Fluids 53, 753–777 (2007)

    Article  MATH  Google Scholar 

  3. Hirschen, K., Schäfer, M.: Artifical neural networks for shape optimization in CFD. In: Proceedings of Design Optimization International Conference, Athens (2004)

    Google Scholar 

  4. Gunzburger, M.D.: Perspectives in Flow Control and Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  MATH  Google Scholar 

  5. Gunzburger, M.: Adjoint equation-based methods for control problems in viscous, incompressible flows. Flow Tubul. Combust. 65, 249–272 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borggaard, J., Burns, J.: A PDE sensitivity equation method for optimal aerodynamic design. Int. J. Comput. Phys. 136, 366–384 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burkhardt, J., Peterson, J.: Control of steady incompressible 2d channel flows. Flow Control IMA Vol. Math. Appl. 68, 111–216 (1995)

    Google Scholar 

  8. Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  9. Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3, 269–289 (1974)

    Article  MATH  Google Scholar 

  10. Chien, K.H.: Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model. AIAA J. 22, 33–38 (1982)

    Article  Google Scholar 

  11. Griewank, A., Corliss, G.F.: Automatic Differentiation of Algorithms: Theory, Implementation, and Application. Defense Technical Information Center OAI-PMH Repository (1998)

    Google Scholar 

  12. É, T., Pelletier, D., Borggaard, J.: A continuous sensitivity equation approach to optimal design in mixed convection. Numer. Heat Trans. A Appl. 38(8), 869–885 (2000)

    Article  Google Scholar 

  13. Duvigneau, R., Pelletier, D.: On accurate boundary conditions for a shape sensitivity equation method. Int. J. Numer. Methods Fluids 50, 147–164 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Siegmann, J., Becker, G., Michaelis, J., Schäfer, M.: A general sensitivity based shape optimization approach for arbitrary surfaces. In: Proceedings of the 8th World Congress on Structural and Multidisciplinary Optimization, WCSMO, Lisbon (2009)

    Google Scholar 

  15. Jacoby, S.L.S., Kowalik, J.S., Pizzo, J.T.: Iterative Methods for Nonlinear Optimization Problems. Prentice-Hall, Englewood Cliffs (1972)

    MATH  Google Scholar 

  16. Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids. Oxford Science, Oxford (2001)

    MATH  Google Scholar 

  17. Becker, G., Siegmann, J., Michaelis, J., Schäfer, M.: Comparison of a derivative-free and a gradient-based shape optimization method in the context of fluid–structure interaction. In: 8th World Congress on Structural and Multidisciplinary Optimization, WCSMO, Lisbon (2009)

    Google Scholar 

  18. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  19. Becker, G., Falk, U., Schäfer, M.: Shape optimization with higher-order surfaces in consideration of fluid–structure interaction. In: Fluid–Structure Interaction: Theory, Numerics and Applications. Kassel University Press, Kassel (2009)

    Google Scholar 

  20. Schäfer, M., Heck, M., Yigit, S.: An implicit partitoned method for the numerical simulation of fluid–structure interaction. In: Bungartz, H.-J., Schäfer, M. (eds.) Fluid–Structure Interaction: Modelling, Simulation, Optimization, 53, pp. 171–194. Springer, Berlin/Heidelberg (2006)

    Google Scholar 

  21. Lehnhäuser, T., Ertem-Müller, S., Schäfer, M., Janicka, J.: Advances in numerical methods for simulating turbulent flows. Prog. Comput. Fluid Dyn. 4(3–5), 208–228 (2004)

    Article  Google Scholar 

  22. Lehnhäuser, T.: Eine effiziente numerische Methode zur Gestaltoptimierung von Strömungsgebieten. TU Darmstadt (2005)

    Google Scholar 

  23. Lehnhäuser, T., Schäfer, M.: Improved linear practice for finite-volume schemes on complex grids. Int. J. Numer. Methods Fluids 38, 625–645 (2002)

    Article  MATH  Google Scholar 

  24. Gauß, F., Schäfer, M.: A local adaptive grid refinement strategy for block-structured finite-volume solvers. In: Proceedings of the 6th International Conference on Engineering Computational Technology, Athens (2008)

    Google Scholar 

  25. Gauß, F., Schäfer, M., Siegmann, J., Sternel, D.: On the influence of boundary discretization schemes on the accuracy of flow simulation with local refinement. In: IV International Conference on Adaptive Modelling and Simulation 2009, Brussels (2009)

    Google Scholar 

  26. Gauß, F.: Strategien zur lokalen adaptiven Gitterverfeinerung für Strömungslöser. TU Darmstadt (2005)

    Google Scholar 

  27. Schäfer, M.: Computational Engineering – Introduction to Numerical Methods. Springer, Berlin (2006)

    Google Scholar 

  28. Briggs, W.L., Henson, V.E., Kaspar, B.: A Multigrid Tutorial. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  29. Hackbusch, W.: Multi-Grid Methods and Applications. Springer, Berlin (1985)

    MATH  Google Scholar 

  30. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Elsevier Academic Press, San Diego (2001)

    MATH  Google Scholar 

  31. Michaelis, J., Siegmann, J., Becker, G., Schäfer, M.: Efficiency of geometric multigrid methods for solving the sensitivity equatins within gradient based flow optimzazion problems. In Proceedings of the V European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010, Lisbon (2010)

    Google Scholar 

  32. Michaelis, J., Siegmann, J., Schäfer, M.: Parallel efficiency of multigrid methods for solving flow sensitivity equations. In: Proceedings of the CFD and OPTIMIZATION 2011–002, Antalya (2011)

    Google Scholar 

  33. Hempel, R.: The MPI standard for message passing. Lect. Notes Comput. Sci. 797, 247–252 (1994)

    Article  Google Scholar 

  34. Stanley, L.G., Stewart, D.L.: Design Sensitivity Analysis. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Siegmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Siegmann, J., Becker, G., Michaelis, J., Schäfer, M. (2013). Efficient Numerical Schemes for Simulation and Optimization of Turbulent Reactive Flows. In: Janicka, J., Sadiki, A., Schäfer, M., Heeger, C. (eds) Flow and Combustion in Advanced Gas Turbine Combustors. Fluid Mechanics and Its Applications, vol 1581. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5320-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5320-4_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5319-8

  • Online ISBN: 978-94-007-5320-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics