Skip to main content

Approaches Toward the Study of Halophilic Microorganisms in Their Natural Environments: Who Are They and What Are They Doing?

  • Chapter
Advances in Understanding the Biology of Halophilic Microorganisms

Abstract

Hypersaline lakes with salt concentrations exceeding 250 g/l are often characterized by very dense communities of halophilic microorganisms imparting a red coloration to the brines. Such red waters can be found in the North Arm of Great Salt Lake , Utah, in crystallizer ponds of solar salterns for the production of salt from seawater, and in many extremely hypersaline alkaline lakes. At times even the magnesium chloride-rich waters of the Dead Sea have become red as a result of massive development of pigmented salt-loving microorganisms.

Dedicated to the memory of Carol D. Litchfield (1936–2012) who taught me much about halophiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antón J, Llobet-Brossa E, Rodríguez-Valera F, Amann R (1999) Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1:517–523

    Article  PubMed  Google Scholar 

  • Antón J, Rosselló-Mora R, Rodríguez-Valera F, Amann R (2000) Extremely halophilic Bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057

    Article  PubMed  PubMed Central  Google Scholar 

  • Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel extreme halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491

    Article  PubMed  Google Scholar 

  • Antón J, Peña A, Santos F, Martínez-García M, Schmitt-Kopplin P, Rosselló-Mora R (2008) Distribution, abundance and diversity of the extremely halophilic bacterium Salinibacter ruber. Sal Syst 4:15

    Article  CAS  Google Scholar 

  • Baati H, Guermazi S, Amdouni R, Gharsallah N, Sghir A, Ammar E (2008) Prokaryotic diversity of a Tunisian multipond solar saltern. Extremophiles 12:505–518

    Article  CAS  PubMed  Google Scholar 

  • Baati H, Guermazi S, Gharsallah N, Sghir A, Ammar E (2010) Novel prokaryotic diversity in sediments of Tunisian multipond solar saltern. Res Microbiol 161:573–582

    Article  PubMed  Google Scholar 

  • Benlloch S, Martínez-Murcia AJ, Rodríguez-Valera F (1995) Sequencing of bacterial and archaeal 16S rRNA genes directly amplified from a hypersaline environment. Syst Appl Microbiol 18:574–581.

    Article  Google Scholar 

  • Benlloch S, Acinas SG, Martínez-Murcia AJ, Rodríguez-Valera F (1996) Description of prokaryotic biodiversity along the salinity gradient of a multipond saltern by direct PCR amplification of 16S rDNA. Hydrobiologia 329:19–31

    Article  CAS  Google Scholar 

  • Benlloch S, López-López A, Casamayor EO, ØvreÃ¥s L, Goddard V, Dane FL, Smerdon G, Massana R, Joint I, Thingstad F, Pedrós-Alió C, Rodríguez-Valera F (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349–360

    Article  PubMed  Google Scholar 

  • Brandt KK, Vester F, Jensen AN, Ingvorsen K (2001) Sulfate reduction dynamics and enumeration of sulfate-reducing bacteria in hypersaline sediments of the Great Salt Lake (Utah, USA). Microb Ecol 41:1–11

    Article  CAS  PubMed  Google Scholar 

  • Brum JR, Steward GF (2010) Morphological characterization of viruses in the stratified water column of alkaline, hypersaline Mono Lake. Microb Ecol 60:636–643

    Article  PubMed  Google Scholar 

  • Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004) Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70:5258–5265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodríguez-Valera F, Bolhuis H, Dyall-Smith ML (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392

    Article  CAS  PubMed  Google Scholar 

  • Canfield DE, Sørensen KB, Oren A (2004) Biogeochemistry of a gypsum-encrusted microbial ecosystem. Geobiology 2:133–150

    Article  CAS  Google Scholar 

  • Casamayor EO, Massana R, Benlloch S, ØvreÃ¥s L, Díez B, Goddard VJ, Gasol JM, Joint I, Rodríguez-Valera F, Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348

    Article  PubMed  Google Scholar 

  • Corcelli A, Lobasso S (2006) Characterization of lipids of halophilic Archaea. In: Rainey FA, Oren A (eds) Extremophiles—Methods in microbiology, vol. 35. Elsevier/Academic Press, Amsterdam.

    Google Scholar 

  • Corcelli A, Lattanzio VMT, Mascolo G, Babudri F, Oren A, Kates M (2004) Novel sulfonolipid in the extremely halophilic bacterium Salinibacter ruber. Appl Environ Microbiol 70:6678–6685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demergasso C, Escudero L, Casamayor EO, Chong G, Balagué V, Pedrós-Alió C (2008) Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12:491–504

    Article  CAS  PubMed  Google Scholar 

  • Diez B, Antón J, Guixa-Boixereu N, Pedrós-Alió C, Rodríguez-Valera F (2000) Pulsed-field gel electrophoresis analysis of virus assemblages present in a hypersaline environment. Int Microbiol 3:159–164

    CAS  PubMed  Google Scholar 

  • Dussault HP (1956) Study of red halophilic bacteria in solar salt and salted fish: II. Bacto-oxgall as a selective agent for differentiation. J Fish Res Bd Canada 13:195–199

    Article  Google Scholar 

  • Eder W, Ludwig W, Huber R (1999) Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea. Arch Microbiol 172:213-218

    Article  CAS  PubMed  Google Scholar 

  • Eder W, Jahnke LL, Schmidt M, Huber R (2001) Microbial diversity of the brine-seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl Environ Microbiol 67:3077–3085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eder W, Schmidt M, Koch M, Garbe-Schönberg D, Huber R (2002) Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4:758–763

    Article  CAS  PubMed  Google Scholar 

  • Elevi Bardavid R, Oren A (2008a) Dihydroxyacetone metabolism in Salinibacter ruber and in Haloquadratum walsbyi. Extremophiles 12:125–131

    Article  CAS  Google Scholar 

  • Elevi Bardavid R, Oren A (2008b) Sensitivity of Haloquadratum and Salinibacter to antibiotics and other inhibitors: implications for the assessment of the contribution of Archaea and Bacteria to heterotrophic activities in hypersaline environments. FEMS Microbiol Ecol 63:309–315

    Article  CAS  Google Scholar 

  • Elevi Bardavid R, Oren A (2012) Acid-shifted isoelectric point profiles of the proteins in a hypersaline microbial mat—an adaptation to life at high salt concentrations? Extremophiles 16:787–792

    Article  CAS  PubMed  Google Scholar 

  • Elevi Bardavid R, Khristo P, Oren A (2008) Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds. Extremophiles 12:5–14

    Article  Google Scholar 

  • Estrada M, Henriksen P, Gasol JM, Casamayor EO, Pedrós-Alió C (2004) Diversity of planktonic photoautotrophic microorganisms along a salinity gradients as depicted by microscopy, flow cytometry, pigment analysis and DNA-based methods. FEMS Microbiol Ecol 49:281–293

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Werner J, Chernikova TN, Bargiela R, Fernández L, La Cono V, Waldmann J, Teeling H, Golyshina OV, Glöckner FO, Yakimov MM, Golyshin PN, the MAMBA Scientific Consortium (2012) Unveiling microbial life in the new deep-sea hypersaline Lake Thetis. Part II: a metagenomic study. Environ Microbiol 14:268–281.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Heredia I, Martin-Cuadrado A-B, Mojica FJM, Santos F, Mira A, Antón J, Rodríguez-Valera F (2012) Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PLoS One 7:e33802

    Article  CAS  Google Scholar 

  • Gareeb AP, Setati ME (2009) Assessment of alkaliphilic haloarchaeal diversity in Sua pan evaporator ponds in Botswana. Afr J Biotechnol 8:259–267

    CAS  Google Scholar 

  • Gasol JM, Casamayor EO, Joint I, Garde K, Gustavson K, Benlloch S, Díez B, Schauer M, Massana R, Pedrós-Alió C (2004) Control of heterotrophic prokaryotic abundance and growth rate in hypersaline planktonic environments. Aquat Microb Ecol 34:193–206.

    Article  Google Scholar 

  • Ghai R, Fernández AB, Martin-Cuadrado A-B, Megumi Mizuno C, McMahon KD, Papke RT, Stepanauskas R, Rodriguez-Brito B, Rohwer F, Sánchez-Porro C, Ventosa A, Rodríguez-Valera F (2011) New abundant microbial groups in aquatic hypersaline environments. Sci Rep 1:135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giri BJ, Bano N, Hollibaugh JT (2004) Distribution of RuBisCO genotypes along a redox gradient in Mono Lake, California. Appl Environ Microbiol 70:3443–3448.

    Google Scholar 

  • Grant S, Grant WD, Jones BE, Kato C, Li L (1999) Novel archaeal phylotypes from an East African alkaline saltern. Extremophiles 3:139–145.

    Article  CAS  PubMed  Google Scholar 

  • Guixa-Boixareu N, Calderón-Paz JI, Heldal M, Bratbak G, Pedrós-Alió C (1996) Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat Microb Ecol 11;215–227.

    Article  Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog GS, PlemenitaÅ¡ A (2000) Hypersaline water in salterns—natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240.

    CAS  Google Scholar 

  • Humayoun SB, Bano N, Hollibaugh JT (2003) Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69:1030–1042.

    Google Scholar 

  • Ionescu D, Lipski A, Altendorf K, Oren A (2007) Characterization of the endoevaporitic microbial communities in a hypersaline gypsum crust by fatty acid analysis. Hydrobiologia 576:15–26.

    Article  CAS  Google Scholar 

  • Javor BJ (1983) Planktonic standing crop and nutrients in a saltern ecosystem. Limnol Oceanogr 28:153–159.

    Article  CAS  Google Scholar 

  • Javor B (1989) Hypersaline environments. Microbiology and biogeochemistry. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Jiang S, Steward G, Jellison R, Chu W, Choi S (2004) Abundance, distribution, and diversity of viruses in alkaline, hypersaline Mono Lake, California. Microb Ecol 47:9–17.

    Google Scholar 

  • Joint I, Henriksen P, Garde K, Riemann B (2002) Primary production, nutrient assimilation and microzooplankton grazing along a hypersaline gradient. FEMS Microbiol Ecol 39:245–257.

    Article  CAS  PubMed  Google Scholar 

  • Joye SB, Samarkin VA, Orcutt BM, MacDonald IR, Hinrichs K-U, Elvert M, Teske AP, Lloyd KG, Lever MA, Montoya JP, Meile CD (2009) Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nature Geosci 2:349–354.

    Article  CAS  Google Scholar 

  • Kamekura M, Oesterhelt D, Wallace R, Anderson P, Kushner DJ (1988) Lysis of halobacteria in Bacto-peptone by bile acids. Appl Environ Microbiol 54:990–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kis-Papo T, Oren A (2000) Halocins: are they important in the competition between different types of halobacteria in saltern ponds? Extremophiles 4:35–41.

    Article  CAS  PubMed  Google Scholar 

  • Kjeldsen KU, Loy A, Jakobsen TF, Thomsen TR, Wagner M, Ingvorsen K (2006) Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiol Ecol 60:287–298.

    Article  CAS  Google Scholar 

  • Kunin V, Raes J, Harris JK, Spear JR, Walker JJ, Ivanova N, von Mering C, Bebout BM, Pace NR, Bork P, Hugenholtz P (2008) Millimeter scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat. Mol Systems Biol 4:198.

    Article  Google Scholar 

  • La Cono V, Smedile F, Bortoluzzi G, Arcadi E, Maimone G, Messina E, Borghini M, Oliveri E, Mazzola S, L’Haridon S, Toffin L, Genovese L, Ferrer M, Giuliano L, Golyshin PN, Yakimov MM (2011) Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: Prokaryotes and environmental settings. Environ Microbiol 13:2250–2268.

    Article  PubMed  Google Scholar 

  • Lattanzio V, Corcelli A, Mascolo G, Oren A (2002) Presence of two novel cardiolipins in the halophilic archaeal community in the crystallizer brines from the salterns of Margherita di Savoia (Italy) and Eilat (Israel). Extremophiles 6:437–444.

    Article  CAS  PubMed  Google Scholar 

  • Legault BA, Lopez-Lopez A, Alba-Casado JC, Doolittle WF, Bolhuis H, Rodríguez-Valera F, Papke RT (2006) Environmental genomics of "Haloquadratum walsbyi" in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species. BMC Genomics 7:171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leuko S, Legat A, Fendrihan S, Stan-Lotter H (2004) Evaluation of the LIVE/DEAD BacLight kit for detection of extremophilic Archaea and visualization of microorganisms in environmental hypersaline samples. Appl Environ Microbiol 70:6884–6886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leuko S, Goh F, Allen MA, Burns BP, Walter MR, Neilan BA (2007) Analysis of intergenic spacer region length polymorphisms to investigate the halophilic archaeal diversity of stromatolites and microbial mats. Extremophiles 11:203–210.

    Article  CAS  PubMed  Google Scholar 

  • Leuko S, Goh F, Ibáñez-Peral R, Burns BP, Walker MR, Neilan BA (2008) Lysis efficiency of standard DNA extraction methods for Halococcus spp. in an organic rich environment. Extremophiles 12:301-308.

    Article  CAS  PubMed  Google Scholar 

  • Litchfield CD, Gillivet PM (2002) Microbial diversity and complexity in hypersaline environments: a preliminary assessment. J Ind Microbiol Biotchnol 28:48–55.

    Article  CAS  Google Scholar 

  • Litchfield CD, Oren A (2001) Polar lipids and pigments as biomarkers for the study of the microbial community structure of solar salterns. Hydrobiologia 466:81–89.

    Article  CAS  Google Scholar 

  • Litchfield CD, Irby A, Kis-Papo T, Oren A (2000) Comparisons of the polar lipid and pigment profiles of two solar salterns located in Newark, California, USA, and Eilat, Israel. Extremophiles 4:259–265.

    Article  CAS  PubMed  Google Scholar 

  • Litchfield CD, Irby A, Kis-Papo T, Oren A (2001) Comparative metabolic diversity in two solar salterns. Hydrobiologia 466:73–80.

    Article  Google Scholar 

  • Litchfield CD, Sikaroodi M, Gillivet PM (2006) Characterization of natural communities of halophilic microorganisms. In: Rainey FA, Oren A (eds), Extremophiles—Methods in microbiology, vol. 35. Elsevier/Academic Press, Amsterdam.

    Book  Google Scholar 

  • Lobasso S, Lopalco P, Mascolo G, Corcelli A (2008) Lipids of the ultra-thin square halophilic archaeon Haloquadratum walsbyi. Archaea 2:177–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopalco P, Lobasso S, Baronio M, Angelini R, Corcelli A (2011) Impact of lipidomics on the microbial world of hypersaline environments. In: Ventosa A, Oren A, Ma Y (eds), Halophiles and hypersaline environments. Current research and future trends. Springer, Heidelberg.

    Book  Google Scholar 

  • Lutnæs BF, Oren A, Liaaen-Jensen S (2002) New C40-carotenoid acyl glycoside as principal carotenoid of Salinibacter ruber, an extremely halophilic eubacterium. J Nat Prod 65:1340–1343.

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Zhang W, Xue Y, Zhou P, Ventosa A, Grant WD (2004) Bacterial diversity of the Inner Mongolian Baer Soda Lake as revealed by 16S rRNA gene sequence analyses. Extremophiles 8:45–51.

    Article  CAS  PubMed  Google Scholar 

  • Makhdoumi-Kakhki A, Amoozegar MA, Kazemi B, PaÅ¡ić L, Ventosa A (2012) Prokaryotic diversity in Aran-Bidgol salt lake, the largest hypersaline playa in Iran. Microbes Environ 27:87–93.

    Article  PubMed  Google Scholar 

  • Manikandan M, Kannan V, PaÅ¡ić L (2009) Diversity of microorganisms in solar salterns of Tamil Nadu, India. World J Microbiol Biotechnol 25:1007–1017.

    Article  Google Scholar 

  • Maturrano L, Santos F, Rosselló-Mora R, Antón J (2006) Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesbah NM, Abou-El-Ela SH, Wiegel J (2007) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microb Ecol 54:598–617.

    Article  CAS  PubMed  Google Scholar 

  • Mouné S, Caumette P, Matheron R, Willison JC (2002) Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. FEMS Microbiol Ecol 44:117–130.

    Article  CAS  Google Scholar 

  • Mwrichia R, Cousin S, Muigai AW, Boga HI, Stackebrandt E (2010) Archaeal diversity in the haloalkaline Lake Elmenteita in Kenya. Curr Microbiol 60:47–52.

    Article  CAS  Google Scholar 

  • Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ, Heidelberg KB, Banfield JF, Allen EE (2012) De novo assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J 6:81–93.

    Article  CAS  PubMed  Google Scholar 

  • Nissenbaum A, Kaplan IR (1976) Sulfur and carbon isotopic evidence for biogeochemical processes in the Dead Sea. In: Nriagu JO (ed), Environmental biogeochemistry, vol. 1. Ann Arbor Science Publishers, Ann Arbor.

    Google Scholar 

  • Ochsenreiter T, Pfeifer F, Schleper C (2002) Diversity of Archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies. Extremophiles 6:267–274.

    Article  CAS  PubMed  Google Scholar 

  • Oremland RS, King GM (1989) Methanogenesis in hypersaline environments. In: Cohen Y, Rosenberg E (eds), Microbial mats. Physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Oren A (1983a) Population dynamics of halobacteria in the Dead Sea water column. Limnol Oceanogr 28:1094–1103.

    Article  Google Scholar 

  • Oren A (1983b) Bacteriorhodopsin-mediated CO2 photoassimilation in the Dead Sea. Limnol Oceanogr 28:33–41.

    Article  CAS  Google Scholar 

  • Oren A (1989) A method for the differential microscopic enumeration of Halobacterium cells. J Microbiol Meth 10:183–187.

    Article  Google Scholar 

  • Oren A (1990a) Formation and breakdown of glycine betaine and trimethylamine in hypersaline environments. Antonie van Leeuwenhoek 58:291–298.

    Article  CAS  PubMed  Google Scholar 

  • Oren A (1990b) Thymidine incorporation in saltern ponds of different salinities: estimation of in situ growth rates of halophilic archaeobacteria and eubacteria. Microb Ecol 19:43–51.

    Article  CAS  PubMed  Google Scholar 

  • Oren A (1990c) The use of protein synthesis inhibitors in the estimation of the contribution of halophilic archaebacteria to bacterial activity in hypersaline environments. FEMS Microbiol Ecol 73:187–192.

    Article  CAS  Google Scholar 

  • Oren A (1990d) Estimation of the contribution of halobacteria to the bacterial biomass and activity in a solar saltern by the use of bile salts. FEMS Microbiol Ecol 73:41–48.

    Article  CAS  Google Scholar 

  • Oren A (1992) Bacterial activities in the Dead Sea, 1980–1991: survival at the upper limit of salinity. Int J Salt Lake Res 1:7–20.

    Article  Google Scholar 

  • Oren A (1993) Availability, uptake, and turnover of glycerol in hypersaline environments. FEMS Microbiol Ecol 12:15–23.

    Article  CAS  Google Scholar 

  • Oren A (1994) Characterization of the halophilic archaeal community in saltern crystallizer ponds by means of polar lipid analysis. Int J Salt Lake Res 3:15–29.

    Article  Google Scholar 

  • Oren A (1995a) Uptake and turnover of acetate in hypersaline environments. FEMS Microbiol Ecol 18;75–84.

    Article  CAS  Google Scholar 

  • Oren A (1995b) The role of glycerol in the nutrition of halophilic archaeal communities: a study of respiratory electron transport. FEMS Microbiol Ecol 16:281–290.

    Article  CAS  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A (2001) The bioenergetic basis for the decrease in metabolic diversity in increasing salt concentrations: implications for the functioning of salt lake ecosystems. Hydrobiologia 466:61–72.

    Article  CAS  Google Scholar 

  • Oren A (2002a) Halophilic microorganisms and their environments. Kluwer Scientific Publishers, Dordrecht.

    Book  Google Scholar 

  • Oren A (2002b) Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol 39:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2006) Life at high salt concentrations. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds), The prokaryotes. A handbook on the biology of bacteria: Ecophysiology and biochemistry, vol. 2. Springer, New York, NY.

    Google Scholar 

  • Oren A (2009) Microbial diversity and microbial abundance in salt-saturated brines: why are the waters of hypersaline lakes red? In: Oren A, Naftz DL, Palacios P, Wurtsbaugh WA (eds), Saline lakes around the world: Unique systems with unique values, The S.J. and Jessie E. Quinney Natural Resources Research Library, College of Natural Resources, Utah State University, Salt Lake City, UT.

    Google Scholar 

  • Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13:1908–1923.

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Ben-Yosef N (1997) Development and spatial distribution of an algal bloom in the Dead Sea: A remote sensing study. Aquat Microb Ecol 13:219–223.

    Article  Google Scholar 

  • Oren A, Dubinsky Z (1994) On the red coloration of saltern crystallizer ponds. II. Additional evidence for the contribution of halobacterial pigments. Int J Salt Lake Res 3:9–13.

    Article  Google Scholar 

  • Oren A, Gurevich P (1993) Characterization of the dominant halophilic archaea in a bacterial bloom in the Dead Sea. FEMS Microbiol Ecol 12:249–256.

    Article  CAS  Google Scholar 

  • Oren A, Gurevich P (1994) Production of D-lactate, acetate, and pyruvate from glycerol in communities of halophilic archaea in the Dead Sea and in saltern crystallizer ponds. FEMS Microbiol Ecol 14:147–156.

    CAS  Google Scholar 

  • Oren A, Gurevich P (1995) Dynamics of a bloom of halophilic archaea in the Dead Sea. Hydrobiologia 315:149–158.

    Article  Google Scholar 

  • Oren A, Rodríguez-Valera F (2001) The contribution of Salinibacter species to the red coloration of saltern crystallizer ponds. FEMS Microbiol Ecol 36:123–130.

    CAS  PubMed  Google Scholar 

  • Oren A, Shilo M (1981) Bacteriorhodopsin in a bloom of halobacteria in the Dead Sea. Arch Microbiol 130:185–187.

    Article  CAS  Google Scholar 

  • Oren A, Shilo M (1982) Population dynamics of Dunaliella parva in the Dead Sea. Limnol Oceanogr 27;201–211.

    Article  Google Scholar 

  • Oren A, Stambler N, Dubinsky Z (1992) On the red coloration of saltern crystallizer ponds. Int J Salt Lake Res 1:77–89.

    Article  Google Scholar 

  • Oren A, Fischel U, Aizenshtat Z, Krein EB, Reed RH (1994) Osmotic adaptation of microbial communities in hypersaline microbial mats. In: Stal LJ, Caumette P (eds), Microbial mats. Structure, development and environmental significance. Springer-Verlag, Berlin.

    Google Scholar 

  • Oren A, Gurevich P, Anati DA, Barkan E, Luz B (1995a) A bloom of Dunaliella parva in the Dead Sea in 1992: biological and biogeochemical aspects. Hydrobiologia 297:173–185.

    Article  CAS  Google Scholar 

  • Oren A, Kühl M, Karsten U (1995b) An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Mar Ecol Prog Ser 128:151–159.

    Article  Google Scholar 

  • Oren A, Duker S, Ritter S (1996) The polar lipid composition of Walsby’s square bacterium. FEMS Microbiol Lett 138:135–140.

    Article  CAS  Google Scholar 

  • Oren A, Bratbak G, Heldal M (1997) Occurrence of virus-like particles in the Dead Sea. Extremophiles 1:143–149.

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Ionescu D, Lipski A, Altendorf K (2005) Fatty acid analysis of a layered community of cyanobacteria developing in a hypersaline gypsum crust. Algol Stud 117:339–347.

    Google Scholar 

  • Oren A, Sørensen KB, Canfield DE, Teske AP, Ionescu D, Lipski A, Altendorf K (2009) Microbial communities and processes within a hypersaline gypsum crust in a saltern evaporation pond (Eilat, Israel). Hydrobiologia 626:15–26.

    Article  CAS  Google Scholar 

  • ØvreÃ¥s L, Daae FL, Torsvik T, Rodríguez-Valera F (2003) Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction fragment length polymorphism (T-RFLP). Microb Ecol 46:291–301.

    Article  PubMed  CAS  Google Scholar 

  • Pagaling E, Wang H, Venables M, Wallace A, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2009) Microbial biogeography of six salt lakes in Inner Mongolia, China, and a salt lake in Argentina. Appl Environ Microbiol 75:5750–5760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parnell JJ, Rompato G, Latta LC, IV, Pfender ME, Van Nostrand JD, He Z, Zhou J, Andersen G, Champine P, Ganesan B, Weimer BC (2010) Functional biogeography as evidence of gene transfer in hypersaline microbial communities. PLoS One 5:e12919.

    Article  CAS  Google Scholar 

  • PaÅ¡ić L, Galán Bartual S, Poklar Ulrih N, Grabnar M, Herzog Velikonja B (2005) Diversity of halophilic archaea in the crystallizers of an Adriatic solar saltern. FEMS Microbiol Ecol 54:491–498.

    Article  PubMed  CAS  Google Scholar 

  • PaÅ¡ić L, Poklar Ulrih N, ÄŒrnigoj M, Grabnar M, Herzog Velikonja B (2007) Haloarchaeal communities in the crystallizers of two Adriatic solar salterns. Can J Microbiol 53:8–18.

    Article  PubMed  Google Scholar 

  • Pedrós-Alió C, Calderón-Paz JI, MacLean MH, Medina G, Marassé C, Gasol JM, Guixa-Boixereu N (2000a) The microbial food web along salinity gradients. FEMS Microbiol Ecol 32:143–155.

    Article  PubMed  Google Scholar 

  • Pedrós-Alió C, Calderón-Paz JI, Gasol JM (2000b) Comparative analysis shows that bacterivory, not viral lysis, controls the abundance of heterotrophic prokaryotic plankton. FEMS Microbiol Ecol 32:157–165.

    Article  PubMed  Google Scholar 

  • Porter D, Roychoudhury AN, Cowan D (2007) Dissimilatory sulfate reduction in hypersaline coastal pans: Activity across a salinity gradient. Geochim Cosmochim Acta 71:5102–5116.

    Article  CAS  Google Scholar 

  • Prášil O, Bina D, Medová H, Řeháková K, ZapomÄ›lová E, Veselá J, Oren A (2009) Emission spectroscopy and kinetic fluorimetry studies of the phototrophic microbial communities along the salinity gradient in the solar saltern evaporation ponds of Eilat, Israel. Aquat Microb Ecol 56:285–296.

    Article  Google Scholar 

  • Rees HC, Grant WD, Jones BE, Heaphy S (2004) Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles 8:63–71.

    Article  CAS  PubMed  Google Scholar 

  • Roberts MF (2006) Characterization of organic compatible solutes of halotolerant and halophilic microorganisms. In: Rainey FA, Oren A (eds), Extremophiles—Methods in microbiology, vol. 35. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  • Robertson CE, Spear JR, Harris JK, Pace NR (2009) Diversity and stratification of archaea in a hypersaline microbial mat. Appl Environ Microbiol 75:1801–1810.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Brito B, Li L, Wegley L, Furlam M, Angly F, Breitbart M, Buchanan J, Desnues C, Dinsdale E, Edwards R, Felts B, Haynes M, Liu H, Lipson D, Mahaffy J, Martin-Cuadrado AB, Mira A, Nulton J, PaÅ¡ić L, Rayhawk S, Rodriguez-Mueller J, Rodriguez-Valera F, Salamon P, Srinagesh S, Thingstad TF, Tran T, Thurber RV, Willner D, Youle M, Rohwer F (2010) Viral and microbial community dynamics in four aquatic environments. ISME J 4:739–751.

    Article  PubMed  Google Scholar 

  • Rosselló-Mora R, Lee N, Antón J, Wagner M (2003) Substrate uptake in extremely halophilic microbial communities revealed by microautoradiography and fluorescence in situ hybridization. Extremophiles 7:409–413.

    Article  PubMed  CAS  Google Scholar 

  • Rosselló-Mora R, Lucio M, Peña A, Brito-Echeverría J, López-López A, Valens-Vadell M, Frommberger M, Antón J, Schmitt-Kopplin P (2008) Metabolic evidence for biogeographic isolation of the extremophilic bacterium Salinibacter ruber. ISME J 2:242–253.

    Article  PubMed  CAS  Google Scholar 

  • Sabet S (2012) Halophilic viruses. Springer, Dordrecht

    Book  Google Scholar 

  • Sandaa R-A, Skjodal EF, Bratbak G (2003) Virioplankton community structure along a salinity gradient in a solar saltern. Extremophiles 7:347–351.

    Article  PubMed  Google Scholar 

  • Santos F, Meyerdierks A, Peña A, Rosselló-Mora R, Amann R, Antón J (2007) Metagenomic approach to the study of halophages: the environmental halophage 1. Environ Microbiol 9:1711–1723.

    Article  CAS  PubMed  Google Scholar 

  • Santos F, Moreno-Paz M, Meseguer I, López C, Rosselló-Mora R, Parro V, Antón J (2011) Metatranscriptomic analysis of extremely halophilic viral communities. ISME J 5:1621–1633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos F, Yarza P, Parro V, Meseguer I, Rosselló-Mora R, Antón J (2012) Culture-independent approaches for studying viruses from hypersaline environments. Appl Environ Microbiol 78:1635–1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholten JCM, Joye SB, Hollibaugh JT, Murrell JC (2005) Molecular analysis of the sulfate reducing and archaeal community in a meromictic soda lake (Mono Lake, California) by targeting 16S rRNA, mcrA, apsA, and dsrAB genes. Microb Ecol 50:29–39.

    Article  CAS  PubMed  Google Scholar 

  • Shand RF (2006) Detection, quantification and purification of halocins: peptide antibiotics from haloarchaeal extremophiles. In: Rainey FA, Oren A (eds), Extremophiles—Methods in microbiology, vol. 35. Elsevier/Academic Press, Amsterdam.

    Google Scholar 

  • Sher J, Elevi R, Mana L, Oren A (2004) Glycerol metabolism in the extremely halophilic bacterium Salinibacter ruber. FEMS Microbiol Lett 232:211–215.

    Article  CAS  PubMed  Google Scholar 

  • Sime-Ngando T, Lucas S, Robin A, Pause Tucker K, Colombet J, Forterre P, Breitbart M, Prangishvili D (2011) Diversity of virus-host systems in hypersaline Lake Retba, Senegal. Environ Microbiol 13:1956–1972.

    Article  PubMed  Google Scholar 

  • Sørensen KB, Canfield DE, Oren A (2004) Salt responses of benthic microbial communities in a solar saltern (Eilat, Israel). Appl Environ Microbiol 70:1608–1616.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sørensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:7352–7365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stan-Lotter H, Leuko S, Legat A, Fendrihan S (2006) The assessment of the viability of halophilic microorganisms in natural communities. In: Rainey FA, Oren A (eds), Extremophiles—Methods in microbiology, vol. 35. Elsevier/Academic Press, Amsterdam.

    Google Scholar 

  • Stephens DW, Gillespie DM (1976) Phytoplankton production in the Great Salt Lake, Utah, and a laboratory study of algal response to enrichment. Limnol Oceanogr 21:74–87.

    Article  CAS  Google Scholar 

  • Stoeckenius W, Bivin D, McGinnis K (1985) Photoactive pigments in halobacteria from the Gavish sabkha. In: Friedman GM, Krumbein WE (eds), Hypersaline ecosystems. The Gavish sabkha. Springer-Verlag, Berlin.

    Google Scholar 

  • Stock A, Breiner H-W, Pachiadaki M, Edgcomb V, Filker S, La Cono V, Yakimov MM, Stoeck T (2012) Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles 16:21–34.

    Article  PubMed  Google Scholar 

  • Vaisman A, Oren A (2009) Salisaeta longa gen. nov., sp. nov., a red halophilic bacterium isolated from an experimental mesocosm at Sedom, Israel. Int J Syst Evol Microbiol 59:2571–2574.

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela-Encinas C, Neria-González I, Alcántara-Hernández RJ, Enríquez-Aragón JA, Estrada-Alvarado I, Hernández-Rodríguez C, Dendooven L, Marsch R (2008) Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico). Extremophiles 12:247–254.

    Article  CAS  PubMed  Google Scholar 

  • Van Der Wielen PWJJ, Heijs SK (2007) Sulfate-reducing prokaryotic communities in two deep hypersaline anoxic basins in the Eastern Mediterranean deep sea. Environ Microbiol 9:1335–1340.

    Article  CAS  PubMed  Google Scholar 

  • Wais AC, Daniels LL (1985) Populations of bacteriophage infecting Halobacterium in a transient brine pool. FEMS Microbiol Ecol 31:323–326.

    Article  Google Scholar 

  • Wang C-Y, Ng C-C, Chen T-W, Wu S-J, Shyu Y-T (2007) Microbial diversity analysis of former salterns in southern Taiwan by 16S rRNA-based methods. J Basic Microbiol 7:525–533.

    Article  CAS  Google Scholar 

  • Warkentin M, Schumann R, Oren A (2009) Community respiration studies in saltern crystallizer ponds. Aquat Microb Ecol 56:255–261.

    Article  Google Scholar 

  • Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24:263–290.

    Article  CAS  PubMed  Google Scholar 

  • Wu QL, Zwart G, Schauer M, Kamst-van Agterveld MP, Hahn MW (2006) Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan plateau, China. Appl Environ Microbiol 72:5478–5485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youssef NH, Ashlock-Savage KN, Elshahed M (2012) Phylogenetic diversities and community structure of members of the extremely halophilic Archaea (order Halobacteriales) in multiple saline sediment habitats. Appl Environ Microbiol 78:1332–1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalar P, Kocuvan MA, PlemenitaÅ¡ A, Gunde-Cimerman N (2005) Halophilic black yeasts colonize wood immersed in hypersaline water. Bot Mar 48:323–326.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Oren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oren, A. (2012). Approaches Toward the Study of Halophilic Microorganisms in Their Natural Environments: Who Are They and What Are They Doing?. In: Vreeland, R.H. (eds) Advances in Understanding the Biology of Halophilic Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5539-0_1

Download citation

Publish with us

Policies and ethics