Skip to main content

New Animal Models of Progressive Neurodegeneration: Tools for Developing Predictive Diagnostics and Identifying Presymptomatic Therapeutic Targets

  • Chapter
  • First Online:
Neurodegenerative Diseases: Integrative PPPM Approach as the Medicine of the Future

Abstract

Mental and neurological disorders are increasingly prevalent and constitute a major societal and economic burden worldwide. Many of these diseases and disorders are characterized by progressive deterioration over time that ultimately results in identifiable symptoms that in turn dictate therapy. Disease-specific symptoms, however, often occur late in the degenerative process. A better understanding of the presymptomatic events could allow for the development of new diagnostics and earlier interventions that could slow or stop the disease process. Such studies of progressive neurodegeneration require the use of animal models that are characterized by delayed or slowly developing disease phenotype(s). This brief review describes several examples of such animal models that have recently been developed with relevance to epilepsy, schizophrenia, autism spectrum disorders, amyotrophic lateral sclerosis and Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (2006) Neurology and public health. http://www.who.int/mental_health/neurology/en. Accessed 15 Mar 2012

  2. OHSU Brain Institute (2010) Disease statistics. Oregon Health •& Science University. http://www.ohsu.edu/xd/health/services/brain/in-community/brain-awareness/brain-health/disease-statistics.cfm?WT_rank=1. Accessed 15 Mar 2012

  3. Schulz JB, Falkenburger BH (2004) Neuronal pathology in Parkinson’s disease. Cell Tissue Res 318:135–137

    PubMed  Google Scholar 

  4. Shaw CA, Hoglinger GU (2008) Neurodegenerative diseases: neurotoxins as sufficient etiological agents? Neuromol Med 10:1–9

    CAS  Google Scholar 

  5. Vorhees CV (1986) Principles of behavioural teratology. In: Riley EP, Vorhees CV (eds) Handbook of behavioural teratology. Plenum Press, New York

    Google Scholar 

  6. Kaufmann W (2000) Developmental neurotoxicity. In: Krinkle GJ (ed) The laboratory rat. Academic, London

    Google Scholar 

  7. Ben-Ari Y (2001) Developing networks play a similar melody. Trends Neurosci 24:353–360

    PubMed  CAS  Google Scholar 

  8. Dobbing J, Smart JL (1974) Vulnerability of developing brain and behaviour. Br Med Bull 30:164–168

    PubMed  CAS  Google Scholar 

  9. Murray CJL, Lopez AD (eds) (1994) Global comparative assessment in the health sector: disease burden, expenditures, and intervention packages. World Health Organization, Geneva

    Google Scholar 

  10. Engel J Jr, Schwartzkroin PA (2006) What should be modeled? In: Pitkanen A, Schwartzkroin PA, Moshe SL (eds) Models of seizures and epilepsy. Academic, London

    Google Scholar 

  11. Jefferys JGR (2003) Models and mechanisms of experimental epilepsies. Epilepsia 44:44–50

    PubMed  Google Scholar 

  12. Pitkanen A, Schwartzkroin PA, Moshe SL (eds) (2006) Models of seizures and epilepsy. Academic Press, London

    Google Scholar 

  13. Cavalheiro EA, Silva DF, Turski WA, Calderazzo-Filho LS, Bortolotto ZA, Turski L (1987) The susceptibility of rats to pilocarpine-induced seizures is age-dependent. Dev Brain Res 37:43–58

    CAS  Google Scholar 

  14. Stafstrom CE, Thompson JL, Holmes GL (1992) Kainic acid seizures in the developing brain: status epilepticus and spontaneous recurrent seizures. Brain Res Dev Brain Res 65:227–236

    PubMed  CAS  Google Scholar 

  15. Stafstrom CE, Chronopoulos A, Thurber S, Thompson JL, Holmes GL (1993) Age-dependent cognitive and behavioral deficits after kainic acid-induced seizures. Epilepsia 34:420–432

    PubMed  CAS  Google Scholar 

  16. Doucette TA, Strain SM, Allen GV, Ryan CL, Tasker RA (2000) Comparative behavioural toxicity of domoic acid and kainic acid in neonatal rats. Neurotox Teratol 22:863–869

    CAS  Google Scholar 

  17. Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O, Gaiarsa JL (1997) GABA-A, NMDA and AMPA receptors: a developmentally regulated ‘ménage a trois’. Trends Neurosci 20:523–529

    PubMed  CAS  Google Scholar 

  18. Nitecka L, Tremblay E, Charton G, Bouillot JP, Berger ML, Ben-Ari Y (1984) Maturation of kainic acid seizure-brain damage syndrome in the rat. II. Histopathological sequelae. Neuroscience 13:1073–1094

    PubMed  CAS  Google Scholar 

  19. Sperber EF, Haas KZ, Stanton PK, Moshé SL (1991) Resistance of the immature hippocampus to seizure-induced synaptic reorganization. Brain Res Dev Brain Res 60:88–93

    PubMed  CAS  Google Scholar 

  20. Haas KZ, Sperber EF, Opanashuk LA, Stanton PK, Moshé SL (2001) Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling. Hippocampus 11:615–625

    PubMed  CAS  Google Scholar 

  21. Holmes GL, Sarkisian M, Ben-Ari Y, Chevassus-Au-Louis N (1999) Mossy fiber sprouting after recurrent seizures during early development in rats. J Comp Neurol 22:537–553

    Google Scholar 

  22. Liu Z, Yang Y, Silveira DC, Sarkisian MR, Tandon P, Huang LT, Stafstrom CE, Holmes GL (1999) Consequences of recurrent seizures during early brain development. Neuroscience 92:1443–1454

    PubMed  CAS  Google Scholar 

  23. Galic MA, Riazi K, Heida JG, Mouihate A, Fournier NM, Spencer SJ, Kalynchuk LE, Teskey GC, Pittman QJ (2008) Postnatal inflammation increases seizure susceptibility in adult rats. J Neurosci 28:6904–6913

    PubMed  CAS  Google Scholar 

  24. Galic MA, Riazi K, Henderson AK, Tsutsui S, Pittman QJ (2009) Viral-like brain inflammation during development causes increased seizure susceptibility in adult rats. Neurobiol Dis 36:343–351

    PubMed  CAS  Google Scholar 

  25. Riazi K, Galic MA, Pittman QJ (2010) Contributions of peripheral inflammation to seizure susceptibility: cytokines and brain excitability. Epilepsy Res 89:34–42

    PubMed  CAS  Google Scholar 

  26. Verdoorn TA, Johansen TH, Drejer J, Nielsen EO (1994) Selective block of recombinant GluR6 receptors by NS-102; a novel non-NMDA receptor antagonist. Eur J Pharmacol 269:43–49

    PubMed  CAS  Google Scholar 

  27. Tasker RA, Strain SM, Drejer J (1996) Selective reduction in domoic acid toxicity in vivo by a novel non-N-methyl-D-aspartate receptor antagonist. Can J Physiol Pharmacol 74:1047–1054

    PubMed  CAS  Google Scholar 

  28. Perl TM, Bedard L, Kosatsky T, Hockin JC, Todd EC, Remis RS (1990) An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N Engl J Med 322:1775–1780

    PubMed  CAS  Google Scholar 

  29. Teitelbaum J, Zatorre RJ, Carpenter S, Gendron D, Cashman NR (1990) Neurologic sequelae of domoic acid intoxication due to ingestion of contaminated mussels. N Engl J Med 322:1781–1787

    PubMed  CAS  Google Scholar 

  30. Cendes F, Andermann F, Carpenter S, Zatorre RJ, Cashman NR (1995) Temporal lobe epilepsy caused by domoic acid intoxication: evidence for glutamate receptor-mediated excitotoxicity in humans. Ann Neurol 37:123–126

    PubMed  CAS  Google Scholar 

  31. Doucette TA, Bernard PB, Yuill PC, Tasker RA, Ryan CL (2003) Low doses of non-NMDA glutamate receptor agonists alter neurobehavioural development in the rat. Neurotox Teratol 25:473–479

    CAS  Google Scholar 

  32. Doucette TA, Bernard PB, Husum H, Perry MA, Ryan CL, Tasker RA (2004) Low doses of domoic acid during postnatal development produce permanent changes in rat behaviour and hippocampal morphology. Neurotox Res 6:555–563

    PubMed  CAS  Google Scholar 

  33. Bernard PB, Macdonald DS, Gill DA, Ryan CL, Tasker RA (2007) Hippocampal mossy fiber sprouting and elevated trkB receptor expression following systemic administration of low dose domoic acid during neonatal development. Hippocampus 17:1121–1133

    PubMed  CAS  Google Scholar 

  34. MacDonald DS, Bernard PB, Ramsay Gill DA, Tasker RA (2008) Progressive changes in hippocampal cytoarchitecture in a non-convulsive developmental model of TLE. Program No. 449.8 Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience

    Google Scholar 

  35. Gill DA, Bastlund JF, Anderson NJ, Tasker RA (2009) Reductions in paradoxical sleep time in adult rats treated neonatally with low dose domoic acid. Behav Brain Res 205:564–569

    PubMed  CAS  Google Scholar 

  36. Gill DA, Ramsay SL, Tasker RA (2010) Selective reductions in subpopulations of GABAergic neurons in a developmental rat model of epilepsy. Brain Res 1331:114–123

    PubMed  CAS  Google Scholar 

  37. Tamminga CA, Holcomb HH (2005) Phenotype of schizophrenia: a review and formulation. Mol Psychiatry 10:27–39

    PubMed  CAS  Google Scholar 

  38. Tandon R, Nasrallah HA, Keshavan MS (2009) Schizophrenia “just the facts” 4: clinical features and conceptualization. Schizophr Res 110:1–23

    PubMed  Google Scholar 

  39. Wu EQ, Birnbaum HG, Shi L, Ball DE, Kessler RC, Moulis M, Aggarwal J (2005) The economic burden of schizophrenia in the United States in 2002. J Clin Psychiatry 66:1122–1129

    PubMed  Google Scholar 

  40. Caldwell CB, Gottesman II (1990) Schizophrenics kill themselves too: a review of risk factors for suicide. Schizophr Bull 16:571–589

    PubMed  CAS  Google Scholar 

  41. Radomsky ED, Haas GL, Mann JJ, Sweeney JA (1999) Suicidal behavior in patients with schizophrenia and other psychotic disorders. Am J Psychiatry 156:1590–1595

    PubMed  CAS  Google Scholar 

  42. Valevski A, Zalsman G, Tsafrir S, Lipschitz-Elhawi R, Weizman A, Shohat T (2012) Rate of readmission and mortality risks of schizophrenia patients who were discharged against medical advice. Eur Psychiatry 27:496–499

    Google Scholar 

  43. Rapoport JL, Addington AM, Frangou S (2005) The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 10:434–449

    PubMed  CAS  Google Scholar 

  44. Mednick SA, Machon RA, Huttunen MO (1998) Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 45:189–192

    Google Scholar 

  45. Cannon M, Jones PB, Murray RM (2002) Obstetric complications and schizophrenia: historical and meta-analytic review. Am J Psychiatry 159:1080–1092

    PubMed  Google Scholar 

  46. Geddes JR, Verdoux H, Takei N, Lawrie SM, Bovet P, Eagles JM, Heun R, McCreadie RG, McNeil TF, O'Callaghan E, Stöber G, Willinger U, Murray RM (1999) Schizophrenia and complications of pregnancy and labor: an individual patient data meta-analysis. Schizophr Bull 25:413–423

    PubMed  CAS  Google Scholar 

  47. Fiore M, Grace AA, Korf J, Stampachiacchiere B, Aloe L (2004) Impaired brain development in the rat following prenatal exposure to methylazoxymethanol acetate at gestational day 17 and neurotrophin distribution. Neuroreport 15:1791–1795

    PubMed  CAS  Google Scholar 

  48. Lieberman JA, Perkins D, Belger A, Chakos M, Jarskog F, Boteva K, Gilmore J (2001) The early stages of schizophrenia: speculations on pathogenesis, pathophysiology, and therapeutic approaches. Biol Psychiatry 50:884–897

    PubMed  CAS  Google Scholar 

  49. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Petursson H, Stefansson K (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71:877–892

    PubMed  Google Scholar 

  50. Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C, Wormley B, Sadek H, Kadambi B, Cesare AJ, Gibberman A, Wang X, O'Neill FA, Walsh D, Kendler KS (2002) Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 71:337–348

    PubMed  CAS  Google Scholar 

  51. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 98:6917–6922

    PubMed  CAS  Google Scholar 

  52. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA, Devon RS, St Clair DM, Muir WJ, Blackwood DH, Porteous DJ (2000) Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 9:1415–1423

    PubMed  CAS  Google Scholar 

  53. O'Tuathaigh CM, Babovic D, O'Meara G, Clifford JJ, Croke DT, Waddington JL (2007) Susceptibility genes for schizophrenia: characterisation of mutant mouse models at the level of phenotypic behaviour. Neurosci Behav Rev 31:60–78

    Google Scholar 

  54. Lipska BK, Jaskiw GE, Weinberger DR (1993) Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 9:67–75

    PubMed  CAS  Google Scholar 

  55. Lipska BK, Swerdlow NR, Geyer MA, Jaskiw GE, Braff DL, Weinberger DR (1995) Neonatal excitotoxic hippocampal damage in rats causes post-pubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacology (Berl) 122:35–43

    CAS  Google Scholar 

  56. Grecksch G, Bernstein HG, Becker A, Höllt V, Bogerts B (1999) Disruption of latent inhibition in rats with postnatal hippocampal lesions. Neuropsychopharmacology 20:525–532

    PubMed  CAS  Google Scholar 

  57. Lipska BK, Aultman JM, Verma A, Weinberger DR, Moghaddam B (2002) Neonatal damage of the ventral hippocampus impairs working memory in the rat. Neuropsychopharmacology 27:47–54

    PubMed  Google Scholar 

  58. Brady AM (2009) Neonatal ventral hippocampal lesions disrupt set-shifting ability in adult rats. Behav Brain Res 205:294–298

    PubMed  Google Scholar 

  59. Becker A, Grecksch G, Bernstein HG, Höllt V, Bogerts B (1999) Social behaviour in rats lesioned with ibotenic acid in the hippocampus: quantitative and qualitative analysis. Psychopharmacology (Berl) 144:333–338

    CAS  Google Scholar 

  60. Brady AM, Saul RD, Wiest MK (2010) Selective deficits in spatial working memory in the neonatal ventral hippocampal lesion rat model of schizophrenia. Neuropharmacology 59:605–611

    PubMed  CAS  Google Scholar 

  61. Alquicer G, Silva-Gómez AB, Peralta F, Flores G (2004) Neonatal ventral hippocampus lesion alters the dopamine content in the limbic regions in postpubertal rats. Int J Dev Neurosci 22:103–111

    PubMed  CAS  Google Scholar 

  62. Becker A, Grecksch G (2003) Haloperidol and clozapine affect social behaviour in rats postnatally lesioned in the ventral hippocampus. Pharmacol Biochem Behav 76:1–8

    PubMed  CAS  Google Scholar 

  63. Daenen EW, Wolterink G, Van Ree JM (2003) Hyperresponsiveness to phencyclidine in animals lesioned in the amygdala on day 7 of life. Implications for an animal model of schizophrenia. Eur Neuropsychopharmacol 13:273–279

    PubMed  CAS  Google Scholar 

  64. Miner LA, Ostrander M, Sarter M (1997) Effects of ibotenic acid-induced loss of neurons in the medial prefrontal cortex of rats on behavioral vigilance: evidence for executive dysfunction. J Psychopharmacol 11:169–178

    PubMed  CAS  Google Scholar 

  65. Brown AS, Derkits EJ (2010) Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry 167:261–280

    PubMed  Google Scholar 

  66. Zuckerman L, Weiner I (2005) Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J Psychiatr Res 39:311–323

    PubMed  Google Scholar 

  67. Wolff AR, Bilkey DK (2008) Immune activation during mid-gestation disrupts sensorimotor gating in rat offspring. Behav Brain Res 190:156–159

    PubMed  CAS  Google Scholar 

  68. Ozawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, Iyo M (2006) Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry 59:546–554

    PubMed  CAS  Google Scholar 

  69. Zuckerman L, Weiner I (2003) Post-pubertal emergence of disrupted latent inhibition following prenatal immune activation. Psychopharmacology (Berl) 169:308–313

    CAS  Google Scholar 

  70. Zuckerman L, Rehavi M, Nachman R, Weiner I (2003) Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology 28:1778–1789

    PubMed  CAS  Google Scholar 

  71. Shi L, Fatemi SH, Sidwell RW, Patterson PH (2003) Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 23:297–302

    PubMed  Google Scholar 

  72. Meyer U, Feldon J, Schedlowski M, Yee BK (2005) Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia. Neurosci Biobehav Rev 29:913–94773

    PubMed  CAS  Google Scholar 

  73. Meyer U, Nyffeler M, Engler A, Urwyler A, Schedlowski M, Knuesel I, Yee BK, Feldon J (2006) The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioural pathology. J Neurosci 26:4752–4762

    PubMed  CAS  Google Scholar 

  74. Meyer U, Engler A, Weber L, Schedlowski M, Feldon J (2008) Preliminary evidence for a modulation of fetal dopaminergic development by maternal immune activation during pregnancy. Neuroscience 154:701–709

    PubMed  CAS  Google Scholar 

  75. Harris LW, Sharp T, Gartlon J, Jones DN, Harrison PJ (2003) Long-term behavioural, molecular and morphological effects of neonatal NMDA receptor antagonism. Eur J Neurosci 18:1706–1710

    PubMed  Google Scholar 

  76. Kawabe K, Iwasaki T, Ichitani Y (2007) Repeated treatment with N-methyl-d-aspartate antagonists in neonatal, but not adult, rats causes long-term deficits of radial-arm maze learning. Brain Res 1169:77–86

    PubMed  CAS  Google Scholar 

  77. Montgomery EM, Bardgett ME, Lall B, Csernansky CA, Csernansky JG (1999) Delayed neuronal loss after administration of intracerebroventricular kainic acid to preweanling rats. Dev Brain Res 112:107–116

    CAS  Google Scholar 

  78. Humphrey WM, Dong H, Csernansky CA, Csernansky JG (2002) Immediate and delayed hippocampal neuronal loss induced by kainic acid during early postnatal development in the rat. Dev Brain Res 137:1–12

    CAS  Google Scholar 

  79. Dong H, Csernansky CA, Chu Y, Csernansky JG (2003) Intracerebroventricular kainic acid administration to neonatal rats alters interneuron development in the hippocampus. Dev Brain Res 145:81–92

    CAS  Google Scholar 

  80. Dong H, Csernansky CA, Goico B, Csernansky JG (2003) Hippocampal neurogenesis follows kainic acid-induced apoptosis in neonatal rats. J Neurosci 23:1742–1749

    PubMed  CAS  Google Scholar 

  81. Pulido OM (2008) Domoic acid toxicologic pathology: a review. Mar Drugs 6:180–219

    PubMed  CAS  Google Scholar 

  82. Levin ED, Pizarro K, Pang WG, Harrison J, Ramsdell JS (2005) Persisting behavioral consequences of prenatal domoic acid exposure in rats. Neurotox Teratol 27:719–725

    CAS  Google Scholar 

  83. Levin ED, Pang WG, Harrison J, Williams P, Petro A, Ramsdell JS (2006) Persistent neurobehavioral effects of early postnatal domoic acid exposure in rats. Neurotoxi Teratol 28:673–680

    CAS  Google Scholar 

  84. Adams AL, Doucette TA, Ryan CL (2008) Altered pre-pulse inhibition in adult rats treated neonatally with domoic acid. Amino Acid 35:157–160

    CAS  Google Scholar 

  85. Adams AL, Doucette TA, James R, Ryan CL (2009) Persistent changes in learning and memory in rats following neonatal treatment with domoic acid. Physiol Behav 96:505–512

    PubMed  CAS  Google Scholar 

  86. Doucette TA, Ryan CL, Tasker RA (2007) Gender-based changes in cognition and emotionality in a new rat model of epilepsy. Amino Acid 32:317–322

    CAS  Google Scholar 

  87. Burt MA, Ryan CL, Doucette TA (2008) Altered responses to novelty and drug reinforcement in adult rats treated neonatally with domoic acid. Physiol Behav 93:327–336

    PubMed  CAS  Google Scholar 

  88. Burt MA, Ryan CL, Doucette TA (2008) Low dose domoic acid in neonatal rats abolishes nicotine induced place preference during late adolescence. Amino Acid 35:247–24989

    CAS  Google Scholar 

  89. Ryan CL, Robbins MA, Smith MT, Gallant IC, Adams-Marriott AL, Doucette TA (2011) Altered social interaction in adult rats following neonatal treatment with domoic acid. Physiol Behav 102:291–295

    PubMed  CAS  Google Scholar 

  90. Autism Society Canada (2012) http://www.autismsocietycanada.ca/ Accessed 24 Feb 2012

  91. Iwata K, Matsuzaki H, Takei N, Manabe T, Mori N (2010) Animal models of autism: an epigenetic and environmental viewpoint. J Cent Nerv Syst Dis 2:37–44

    CAS  Google Scholar 

  92. Ganz ML (2007) The lifetime distribution of the incremental societal costs of autism. Arch Pediatric Adolescent Med 161:343–349

    Google Scholar 

  93. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders. In: Section A 09 - autism spectrum disorder, 4th edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  94. Konstantareas MM, Hewitt T (2001) Autistic disorder and Schizophrenia: diagnostic overlaps. J Autism Dev Disord 31:19–28

    PubMed  CAS  Google Scholar 

  95. Perry W, Minassian A, Lopez B, Maron L, Lincoln A (2007) Sensorimotor gating deficits in adults with autism. Biol Psychiatry 61:482–486

    PubMed  Google Scholar 

  96. Macneil LK, Mostofsky SH (2012) Specificity of dyspraxia in children with autism. Neuropsychology 26:165–171

    Google Scholar 

  97. Maski KP, Jeste SS, Spence SJ (2011) Common neurological co-morbidities in autism spectrum disorders. Curr Opin Pediatr 23:609–615

    PubMed  CAS  Google Scholar 

  98. Simonoff E, Pickles A, Charman T, Chandler S, Loucas T, Baird G (2008) Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. J Am Acad Child Adolesc Psychiatr 47:921–929

    Google Scholar 

  99. Leyfer OT, Folstein SE, Bacalman S, Davis NO, Dinh E, Morgan J, Tager-Flusberg H, Lainhart JE (2006) Comorbid psychiatric disorders in children with autism: interview development and rates of disorders. J Autism Dev Dis 36:849–861

    Google Scholar 

  100. Mukaddes NM, Hergűner S, Tanidir C (2010) Psychiatric disorders in individuals with high-functioning autism and Asperger’s disorder: similarities and differences. World J Biol Psychiatr 11:964–971

    Google Scholar 

  101. Skokauskas N, Gallagher L (2010) Psychosis, affective disorders and anxiety in autistic spectrum disorder: prevalence and nosological considerations. Psychopathology 43:8–16

    PubMed  Google Scholar 

  102. Charnsil C, Sriapai P (2011) Attention deficit hyperactivity symptoms in children with autistic disorder: a cross-sectional descriptive study. J Med Assoc Thail 94:231–234

    Google Scholar 

  103. Sipes M, Matson JL, Horovitz M, Shoemaker M (2011) The relationship between autism spectrum disorders and symptoms of conduct problems: the moderating effect of communication. Dev Neurorehab 14:54–59

    Google Scholar 

  104. Clarke DF, Roberts W, Daraksan M, Dupuis A, McCabe J, Wood H, Snead OC 3rd, Weiss SK (2005) The prevalence of autistic spectrum disorder in children surveyed in a tertiary care epilepsy clinic. Epilepsia 46:1970–1977

    PubMed  Google Scholar 

  105. Tuchman R, Rapin I (2002) Epilepsy in autism. Lancet Neurol 1:352–358

    PubMed  Google Scholar 

  106. Tuchman R, Moshé SL, Rapin I (2009) Convulsing toward the pathophysiology of autism. Brain Dev 31:95–103

    PubMed  Google Scholar 

  107. Amiet C, Gourfinkel-An I, Bouzamondo A, Tordjman S, Baulac M, Lechat P, Mottron L, Cohen D (2008) Epilepsy in autism is associated with intellectual disability and gender: evidence from a meta-analysis. Biol Psychiatry 64:577–582

    PubMed  Google Scholar 

  108. Brooks-Kayal A (2010) Epilepsy and autism spectrum disorders: are there common developmental mechanisms? Brain Dev 32:731–738

    PubMed  Google Scholar 

  109. Nazeer A (2011) Psychopharmacology of autistic spectrum disorders in children and adolescents. Pediatr Clin North Am 58:85–97

    PubMed  Google Scholar 

  110. Patterson PH (2011) Modeling autistic features in animals. Pediatr Res 69:34R–40R

    PubMed  Google Scholar 

  111. Geschwind DH (2011) Genetics of autism spectrum disorders. Trends in Cognit Sci 15:409–416

    Google Scholar 

  112. Malkova NV, Yu CZ, Hsiao EY, Moore MJ, Patterson PH (2012) Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav Immun 26:607–616

    Google Scholar 

  113. Dufour-Rainfray D, Vourc’h P, Tourlet S, Guilloteau D, Chalon S, Andres CR (2011) Fetal exposure to teratogens: evidence of genes involved in autism. Neurosci Biobehav Rev 35:1254–1265

    PubMed  CAS  Google Scholar 

  114. Dufour-Rainfray D, Vourc’h P, Le Guisquet AM, Garreau L, Ternant D, Bodard S, Jaumain E, Gulhan Z, Belzung C, Andres CR, Chalon S, Guilloteau D (2010) Behavior and serotonergic disorders in rats exposed prenatally to valproate: a model for autism. Neurosci Lett 470:55–59

    PubMed  CAS  Google Scholar 

  115. Schneider T, Roman A, Basta-Kaim A, Kubera M, Budziszewska B, Schneider K, Przewłocki R (2008) Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology 33:728–740

    PubMed  CAS  Google Scholar 

  116. Schneider T, Przewlocki R (2005) Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30:80–89

    PubMed  CAS  Google Scholar 

  117. Kim KC, Kim P, Go HS, Choi CS, Yang SI, Cheong JH, Shin CY, Ko KH (2011) The critical period of valproate exposure to induce autistic symptoms in Sprague–Dawley rats. Toxicol Lett 201:137–142

    PubMed  CAS  Google Scholar 

  118. Markram K, Rinaldi T, La Mendola D, Sandi C, Markram H (2008) Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology 33:901–912

    Google Scholar 

  119. Schneider T, Ziolkowska B, Gieryk A, Tyminska A, Przewłocki R (2007) Prenatal exposure to valproic acid disturbs the enkephalinergic system functioning, basal hedonic tone, and emotional responses in an animal model of autism. Psychopharmacology 193:547–555

    PubMed  CAS  Google Scholar 

  120. Tashiro Y, Oyabu A, Imura Y, Uchida A, Narita N, Narita M (2011) Morphological abnormalities of embryonic cranial nerves after in utero exposure to valproic acid: implications for the pathogenesis of autism with multiple developmental anomalies. Int J Dev Neurosci 29:359–364

    PubMed  CAS  Google Scholar 

  121. Kuwagata M, Ogawa T, Shioda S, Nagata T (2009) Observation of fetal brain in a Rat valproate-induced autism model: a developmental neurotoxicity study. Int J Dev Neurosci 27:399–405

    PubMed  CAS  Google Scholar 

  122. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX, Chen W, Zhai P, Sufit RL, Siddique T (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775

    PubMed  CAS  Google Scholar 

  123. Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL (1995) An adverse property of familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14:1105–1116

    PubMed  CAS  Google Scholar 

  124. Devon RS, Orban PC, Gerrow K, Barbieri MA, Schwab C, Cao LP, Helm JR, Bissada N, Cruz-Aguado R, Davidson TL, Witmer J, Metzler M, Lam CK, Tetzlaff W, Simpson EM, McCaffery JM, El-Husseini AE, Leavitt BR, Hayden MR (2006) Als2-deficient mice exhibit disturbances in endosome trafficking associated with motor behavioral abnormalities. PNAS 103:9595–9600

    PubMed  CAS  Google Scholar 

  125. Shaw CA, Banjo OC (2008) Fetal exposure of mice to cycad neurotoxins impacts postnatal behaviour. Program No. 445.25. Neuroscience Meeting Planner, Washington, DC: Society for Neuroscience. (Online)

    Google Scholar 

  126. Wilson JM, Khabazian I, Wong MC, Seyedalikhani A, Bains JS, Pasqualotto BA, Williams DE, Andersen RJ, Simpson RJ, Smith R, Craig UK, Kurland LT, Shaw CA (2002) Behavioral and neurological correlates of ALS-parkinsonism dementia complex in adult mice fed washed cycad flour. J Neuromol Med 1:207–222

    CAS  Google Scholar 

  127. Khabazian I, Bains JS, Williams DE, Cheung J, Wilson JM, Pasqualotto BA, Pelech SL, Andersen RJ, Wang YT, Liu L, Nagai A, Kim SU, Craig UK, Shaw CA (2002) Isolation of various forms of sterol β-d-glucoside from the seed of cycas circinalis: neurotoxicity and implications for ALS-PDC. J Neurochem 83:1–13

    Google Scholar 

  128. Tabata RC, Wilson JM, Ly P, Zwiegers P, Kwok D, Van Kampen JM, Cashman N, Shaw CA (2008) Chronic exposure to dietary sterol glucosides is neurotoxic to motor neurons and induces an ASL-PDC phenotype. Neuromol Med 10:24–39

    CAS  Google Scholar 

  129. Barlow BK, Richfield EK, Cory-Slechta DA, Thiruchelvam M (2004) A fetal risk factor for Parkinson’s disease. Dev Neurosci 26:11–23

    PubMed  CAS  Google Scholar 

  130. Fisher LR, Culver DG, Tennant P, Davis AA, Wang M, Castellano-Sanchez A, Khan J, Polak MA, Glass JD (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185:232–240

    Google Scholar 

  131. Kurland LT (1988) Amyotrophic lateral sclerosis and Parkinson’s disease complex on Guam linked to an environmental neurotoxin. Trends Neurol Sci 11:51–54

    CAS  Google Scholar 

  132. Whiting MG (1964) Food practices in ALS foci in Japan, the Marianas, and New Guinea. Federation Proc. Third Conference on Toxicity of Cycads 23: 1343–1345

    Google Scholar 

  133. Borenstein AR, Mortimer JA, Schofield E, Wu Y, Salmon DP, Gamst A, Olichney J, Thal LJ, Silbert L, Kaye J, Craig UL, Schellenberg GD, Galasko DR (2007) Cycad exposure and risk of dementia, MCI, and PDC in the Chamorro population of Guam. Neurology 68:1764–1767

    PubMed  CAS  Google Scholar 

  134. Shen W-B, McDowell KA, Siebert AA, Clark SM, Dugger NV, Valentino KM, Jinnah HA, Sztalryd C, Fishman PS, Shaw CA, Jafri MS, Yarowsky PJ (2010) Environmental neurotoxin-induced progressive model of parkinsonism in rats. Ann Neurol 68(6):70–80

    Google Scholar 

  135. Spencer PS, Hugon J, Ludolph A, Nunn PB, Ross SM, Roy DN, Schaumburg HH (1987) Discovery and partial characterization of primate motor-system toxins. CIBA Found Symp 126:221–238

    PubMed  CAS  Google Scholar 

  136. Dastur DK (1964) Cycad toxicity in monkeys: clinical, pathological, and biochemical aspects. Fed Proc 23:1368–1369

    PubMed  CAS  Google Scholar 

  137. Perry TL, Bergeron C, Biro AJ, Hansen S (1989) Beta-N-methylamino-l-alanine. Chronic oral administration is not neurotoxic to mice. J Neurol Sci 94:173–180

    PubMed  CAS  Google Scholar 

  138. Cruz-Aguado R, Winkler D, Shaw CA (2006) Lack of behavioral and neuropathological effects of dietary b-methylaminoalanine (BMAA) in mice. Pharmacol Biochem Behav 84:294–299

    PubMed  CAS  Google Scholar 

  139. Martin I, Dawson VL, Dawson TM (2011) Recent advances in the genetics of Parkinson’s disease. Ann Rev Genomic Hum Genet 12:301–325

    CAS  Google Scholar 

Download references

Acknowledgements

Amber Marriott is supported by a Canada Graduate Scholarship awarded through the Natural Sciences and Engineering Research Council of Canada and Daphne Gill is supported by a Post-doctoral fellowship from Innovation PEI. Research funding to the investigators was provided by an NINDS RO1 grant to CAS and an Atlantic Innovation Fund grant to RAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Andrew Tasker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marriott, A.L., Gill, D.A., Shaw, C.A., Tasker, R.A. (2013). New Animal Models of Progressive Neurodegeneration: Tools for Developing Predictive Diagnostics and Identifying Presymptomatic Therapeutic Targets. In: Mandel, S. (eds) Neurodegenerative Diseases: Integrative PPPM Approach as the Medicine of the Future. Advances in Predictive, Preventive and Personalised Medicine, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5866-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5866-7_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5865-0

  • Online ISBN: 978-94-007-5866-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics