Skip to main content

Monitoring Change in the Arctic

  • Chapter
  • First Online:
Satellite-based Applications on Climate Change

Abstract

Modeling studies have shown that the Arctic is one of the most sensitive regions on Earth to global climate change due primarily to the positive feedback between surface temperature, surface albedo, and ice extent. Because in situ measurements in this harsh environment are costly, satellites are a critical source of information for monitoring and evaluating changes in the Arctic climate system. Satellite data can be used to measure polar winds, clouds, sea ice, snow cover, and glaciers. Applications of space-based imager and sounder data have shown that over the last three decades, the Arctic has warmed and become cloudier in spring and summer, but cooled and become less cloudy in winter. Arctic sea ice has declined substantially and at a greater rate than that predicted by most climate models. Snow cover has decreased in many areas, and vegetation growth has increased at high latitudes. Satellite products have also been used to demonstrate the complex feedbacks between clouds and sea ice, providing insight into the possible future state of Arctic climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ACIA (2005) Arctic climate impact assessment: impacts of a warming arctic. Cambridge University Press, Cambridge

    Google Scholar 

  • AMAP (2011) Snow, water, ice, and permafrost in the Arctic (SWIPA): climate change and the cryosphere. Arctic Monitoring and Assessment Programme, Oslo, p 538

    Google Scholar 

  • Cavalieri DJ, Parkinson CL, Gloersen P, Comiso JC, Zwally HJ (1999) Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J Geophys Res 104(7):15803–15814

    Article  Google Scholar 

  • Chapman WL, Walsh JE (1993) Recent variations of sea ice and air temperature in high latitudes. Bull Amer Meteor Soc 74(1):33–47

    Google Scholar 

  • Curry JA, Ebert EE (1992) Annual cycle of radiative fluxes over the Arctic Ocean: sensitivity to cloud optical properties. J Climate 5:1267–1280

    Article  Google Scholar 

  • Curry JA, Rossow WB, Randall D, Schramm JL (1996) Overview of Arctic cloud and radiation characteristics. J Climate 9(8):1731–1764

    Article  Google Scholar 

  • Drobot S, Anderson M (2001) Snow melt onset over Arctic sea ice from SMMR and SSM/I Tbs. National Snow and Ice Data Center, Boulder, Digital Media

    Google Scholar 

  • Dworak R, Key J (2009) 20 years of polar winds from AVHRR: validation and comparison to the ERA-40. J Appl Meteorol Clim 48(1):24–40

    Article  Google Scholar 

  • Fowler C, Maslanik J, Haran T, Scambos T, Key J, Emery W (2000) AVHRR polar pathfinder twice-daily 5 km EASE-grid composites. National Snow and Ice Data Center, Boulder, Digital media

    Google Scholar 

  • Francis JA (2002) Validation of reanalysis upper-level winds in the Arctic with independent rawinsonde data. Geophys Res Lett 29:1315

    Article  Google Scholar 

  • Francis JA, Schweiger AJ (1999) The NASA TOVS Polar Pathfinder. 18 years of Arctic data. In: Proceedings of the fifth conference on polar meteorology and oceanography, American Meteorological Society, Dallas, 10–15 Jan 1999

    Google Scholar 

  • Francis JA, Hunter E, Zou CZ (2005) Arctic tropospheric winds derived from TOVS satellite retrievals. J Climate 18:2270–2285

    Article  Google Scholar 

  • Frey R, Baum BA, Menzel WP, Ackerman SA, Moeller CC, Spinhirne JD (1999) A comparison of cloud top heights computed from airborne LIDAR and MAS radiance data using CO2-slicing. J Geophys Res 104(D20):24547–24555

    Article  Google Scholar 

  • Frey R, Ackerman S, Liu Y, Strabala K, Zhang H, Key J, Wang X (2008) Cloud detection with MODIS, part I: improvements in the MODIS cloud mask for collection 5. J Atmos Ocean Tech 25:1057–1072. doi:10.1175/2008JTECHA1052.1

    Article  Google Scholar 

  • Graversen RG, Wang M (2009) Polar amplification in a coupled climate model with locked albedo. Clim Dynam 33:629–643

    Article  Google Scholar 

  • Graversen RG, Mauritsen T, Tjernström M, Källen E, Svensson G (2008) Vertical structure of recent Arctic warming. Nature 451:53–57

    Article  Google Scholar 

  • Groves DG, Francis JA (2002) Variability of the Arctic atmosphere moisture budget from TOVS satellite data. J Geophys Res 107. doi:10.1029/2002/D002285

  • Hahn C (1995) The effect of moonlight on observation of cloud cover at night, and application to cloud climatology. J Climate 8:1429–1446

    Article  Google Scholar 

  • Kay JE, Gettelman A (2009) Cloud influence on and response to seasonal Arctic sea ice loss. J Geophys Res 114:D18204. doi:10.1029/2009JD011773

    Article  Google Scholar 

  • Key JR (2002) The cloud and surface parameter retrieval (CASPR) system for polar AVHRR. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin, Madison, p 59

    Google Scholar 

  • Key J, Barry RG (1989) Cloud cover analysis with Arctic AVHRR, part 1: cloud detection. J Geophys Res 94(D15):18521–18535

    Article  Google Scholar 

  • Key J, Intrieri J (2000) Cloud particle phase determination with the AVHRR. J Appl Meteorol 36(10):1797–1805

    Article  Google Scholar 

  • Key JR, Schweiger AJ (1998) Tools for atmospheric radiative transfer: streamer and FluxNet. Comput Geosci 24(5):443–451

    Article  Google Scholar 

  • Key J, Schweiger AJ, Stone RS (1997a) Expected uncertainty in satellite-derived estimates of the high-latitude surface radiation budget. J Geophys Res 102(C7):15837–15847

    Article  Google Scholar 

  • Key J, Collins J, Fowler C, Stone R (1997b) High-latitude surface temperature estimates from thermal satellite data. Remote Sens Environ 61:302–309

    Article  Google Scholar 

  • Key JR, Wang X, Stroeve JC, Fowler C (2001) Estimating the cloudy sky albedo of sea ice and snow from space. J Geophys Res 106(D12):12489–12497

    Article  Google Scholar 

  • Key J, Santek D, Velden CS, Bormann N, Thepaut J-N, Riishojgaard LP, Zhu Y, Menzel WP (2003) Cloud-drift and water vapor winds in the polar regions from MODIS. IEEE Trans Geosci Remote Sens 41(2):482–492

    Google Scholar 

  • Liu Y, Key J, Wang X (2008) The influence of changes in cloud cover on recent surface temperature trends in the Arctic. J Climate 21:705–715. doi:10.1175/2007JCLI1681.1

    Article  Google Scholar 

  • Liu Y, Key J, Wang X (2009) Influence of changes in sea ice concentration and cloud cover on recent Arctic surface temperature trends. Geophys Research Lett 36:L20710. doi:10.1029/2009GL040708

  • Liu Y, Key JR, Liu Z, Wang X, Vavrus SJ (2012) A cloudier Arctic expected with diminishing sea ice. Geophys Res Lett 39:L05705, doi:10.1029/2012GL051251

  • Manabe S, Stouffer RJ (1994) Multiple-century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon dioxide. J Climate 7(1):5–23

    Article  Google Scholar 

  • Manabe S, Spelman MJ, Stouffer RJ (1992) Transient response of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part II: seasonal response. J Climate 5(2):105–126

    Article  Google Scholar 

  • Martin SE, Munoz E (1997) Properties of the Arctic 2-m air temperature for 1979-present derived from a new gridded data set. J Climate 10:1428–1440

    Article  Google Scholar 

  • Martin SE, Munoz E, Dreucker R (1997) Recent observations of a Spring-Summer warming over the Arctic Ocean. Geophys Res Lett 26:1259–1262

    Article  Google Scholar 

  • Meehl GA, Washington WM (1990) CO2 climate sensitivity and snow-sea-ice parameterization in an atmospheric GCM coupled to a mixed-layer ocean model. Climate Change 16:283–306

    Article  Google Scholar 

  • Meier W, Maslanik JA, Key JR, Fowler CW (1997) Multiparameter AVHRR derived products for Arctic climate studies. Earth Interactions, 1, paper no. 5 (electronic journal only)

    Google Scholar 

  • Menzel WP, Smith WL, Stewart TR (1983) Improved cloud motion vector and altitude assignment using VAS. J Climate Appl Meteorol 22:377–384

    Article  Google Scholar 

  • Merrill R (1989) Advances in the automated production of wind estimates from geostationary satellite imaging. In: Proceedings fourth conference satellite meteorology, Amer. Meteorol. Soc., San Diego, 1989, pp 246–249

    Google Scholar 

  • Miller JR, Russell GL (2000) Projected impact of climatic change on the freshwater and salt budgets of the Arctic Ocean by a GCM. Geophys Res Lett 27:1183–1186

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    Google Scholar 

  • Nieman SJ, Menzel WP, Hayden CM, Gray D, Wanzong ST, Velden CS, Daniels J (1997) Fully automated cloud-drift winds in NESDIS operations. Bull Am Meteorol Soc 78(6):1121–1133

    Article  Google Scholar 

  • Overland JE (2009) The case for global warming in the Arctic. In: Influence of climate change on the changing Arctic and Sub-Arctic conditions. Springer, Dordrecht, pp 13–23

    Google Scholar 

  • Parkinson CL, Cavalieri DJ, Gloersen P, Zwally HJ, Comiso JC (1999) Arctic sea ice extents, areas, and trends, 1978-1996. J Geophys Res 104(C9):20837–20856

    Google Scholar 

  • Perovich DK, Richter-Menge JA, Jones KF, Light B (2008) Sunlight, water, and ice: extreme Arctic sea ice melt during the summer of 2007. Geophys Res Lett 35:L11501. doi:10.1029/2008GL034007

    Article  Google Scholar 

  • Rao PA, Velden CS, Braun SA (2002) The vertical error characteristics of GOES-derived winds: description and experiments with numerical weather prediction. J Appl Meteorol 41(3):253–271

    Article  Google Scholar 

  • Rigor I, Colony RL, Martin S (2000) Variations in surface air temperature observations in the Arctic, 1979–97. J Climate 13:896–914

    Google Scholar 

  • Rossow WB, Walker A, Beuschel D, Roiter M (1996) International satellite cloud climatology project (ISCCP) documentation of cloud data. World Climate Research Programme, NASA, Goddard Institute of Space Studies, p 115

    Google Scholar 

  • Rothrock DA, Yu Y, Maykut GA (1999) Thinning of the Arctic sea-ice cover. Geophys Res Lett 26(23):3469–3472

    Google Scholar 

  • Schmetz J, Holmlund K, Hoffman J, Strauss B, Mason B, Gaertner V, Koch A, van de Berg L (1993) Operational cloud motion winds from METEOSAT infrared images. J Appl Meteorol 32:1206–1225

    Article  Google Scholar 

  • Schweiger AJ, Lindsay RW, Key JR, Francis JA (1999) Arctic cloud in multiyear satellite data set. Geophys Res Lett 26(13):1845–1848

    Article  Google Scholar 

  • Serreze M et al (1998) A new monthly climatology of global radiation for the Arctic and comparisons with NCEP-NCAR reanalysis and ISCCP-C2 fields. J Climate 11:121–136

    Article  Google Scholar 

  • Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536. doi:10.1126/science.1139426

    Article  Google Scholar 

  • Shimada K (2006) Pacific ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys ResLett 33:L08605. doi:10.1029/2005GL025624

    Article  Google Scholar 

  • Velden CS, Hayden CM, Nieman SJ, Menzel WP, Wanzong S, Goerss JS (1997) Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull Am Meteorol Soc 78(2):173–196

    Article  Google Scholar 

  • Velden CS, Olander TL, Wanzong S (1998) The impact of multispectral GOES-8 wind information on Atlantic tropical cyclone track forecasts in 1995. Part 1: dataset methodology, description and case analysis. Mon Weather Rev 126:1202–1218

    Article  Google Scholar 

  • Velden CS, Stettner D, Daniels J (2000) Wind vector fields derived from GOES rapid-scan imagery. In: Proceedings of the 10th conference on satellite meteorology, Long Beach, 9–14 Jan 2000, pp 20–23

    Google Scholar 

  • Velden C, Daniels J, Settner D, Santek D, Key J, Dunion J, Holmlund K, Dengel G, Bresky W, Menzel P (2005) Recent innovations in deriving tropospheric winds from meteorological satellites. Bull Am Meteorol Soc 86:205–223

    Article  Google Scholar 

  • Vinnikov KY, Robock A, Stouffer RJ, Walsh JE, Parkinson CL, Cavalieri DJ, Mitchell JFB, Garrett D, Zakharov VF (1999) Global warming and northern hemisphere sea ice extent. Science 286:1934–1937

    Google Scholar 

  • Wallace JM, Zhang Y, Bajuk L (1996) Interpretation of interdecadal trends in Northern Hemisphere surface air temperature. J Climate 9:249–259

    Google Scholar 

  • Wang X, Key JR (2003) Recent trends in Arctic surface, cloud, and radiation properties from space. Science 299:1725–1728

    Article  Google Scholar 

  • Wang X, Key J (2005a) Arctic surface, cloud, and radiation properties based on the AVHRR Polar Pathfinder data set. Part I: spatial and temporal characteristics. J Climate 18(14):2558–2574

    Article  Google Scholar 

  • Wang X, Key J (2005b) Arctic surface, cloud, and radiation properties based on the AVHRR Polar Pathfinder data set. Part II: recent trends. J Climate 18(14):2575–2593

    Article  Google Scholar 

  • Wang X, Key J, Liu Y (2010) A thermodynamic model for estimating sea and lake ice thickness with optical satellite data. J Geophys Res Oceans 115:14

    Google Scholar 

  • Zou CZ, Van Woert ML (2001) The role of conservation of mass in the satellite-derived poleward moisture transport over the Southern Ocean. J Climate 14:997–1015

    Article  Google Scholar 

  • Zou CZ, Van Woert ML (2002) Atmospheric wind retrievals from satellite soundings over the middle- and high-latitude oceans. Mon Weather Rev 130:1771–1791

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Oceanic and Atmospheric Administration (NOAA) Arctic Research Office, NASA, and the National Science Foundation. David Santek and Richard Dworak contributed to the research on polar winds. Walt Meier and Don Cline provided input on sea ice and snow cover, respectively. The views, opinions, and findings contained in this report are those of the author(s) and should not be construed as an official National Oceanic and Atmospheric Administration or US government position, policy, or decision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R. Key .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Key, J.R., Wang, X., Liu, Y. (2013). Monitoring Change in the Arctic. In: Qu, J., Powell, A., Sivakumar, M. (eds) Satellite-based Applications on Climate Change. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5872-8_9

Download citation

Publish with us

Policies and ethics