Skip to main content

Models of Ion Transport in Mammalian Cells

  • Chapter
  • First Online:
Developing Synthetic Transport Systems

Abstract

Cardiomyocytes, neurons, hepatocytes and erythrocytes are considered based on the algorithm “one ion—one transport system” models of some mammalian cells. Models of the compartments of mammalian cells, e.g., synaptic vesicles, sarco- and endoplasmic reticulum and mitochondria, are built; and models for the regulation of ion transport in mammalian cells and their compartments are presented. We find conditions under which a robust and effective strategy for the switching of transport systems of cells takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Leefmans FJ (2001) Intracellular chloride regulation. In: Sperelakis N (ed) Cell physiology sourcebook, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Barish ME (1991) Increases in intracellular calcium ion concentration during depolarization of cultured embryonic xenopus spinal neurons. J Physiol 444:545–565

    PubMed  CAS  Google Scholar 

  • Baumgarten CM, Feher JI (2001) Osmosis and regulation of cell volume. In: Sperelakis N (ed) Cell physiology sourcebook, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Beard DA, Qian H (2008) Chemical biophysics quantitative analysis of cellular systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol Rev Camb Philos Soc 73(3):203–266

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. Int J Syst Evol Microbiol 52:297–354

    PubMed  CAS  Google Scholar 

  • Chesler M (2003) Regulation and modulation of pH in the brain. Physiol Rev 83:1183–1221

    PubMed  CAS  Google Scholar 

  • Craciun G, Brown A, Friedman A (2005) A dynamical system model of neurofilament transport in axons. J Theor Biol 237:316–322

    Article  PubMed  Google Scholar 

  • El-Mallakh RS (2004) Ion homeostasis and the mechanism of action of lithium. Clin Neurosci Res 4:227–231

    Article  CAS  Google Scholar 

  • Faber GM, Rudy Y (2000) Action potential and contractility changes in [Na+]i overloaded cardiac myocytes: a simulation study. Biophys J 78:2392–2404

    Article  PubMed  CAS  Google Scholar 

  • Fossat B, Porthé-Nibelle J, Pedersen S, Lahlou B (1997) Na+/H+ exchange and osmotic shrinkage in isolated trout hepatocytes. J Exp Biol 200:2369–2376

    PubMed  CAS  Google Scholar 

  • Freedman JC (2001) Membrane transport in red blood cell. In: Sperelakis N (ed) Cell physiology sourcebook, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Freedman JC, Hoffman JF (1979) Ionic and osmotic equilibria of human red blood cells treated with nystatin. J Gen Physiol 74:157–185

    Article  PubMed  CAS  Google Scholar 

  • Freudenrich CC, Murphy E, Liul S, Lieberman M (1992) Magnesium homeostasis in cardiac cells. Mol Cell Biochem 114(1–2):97–103

    PubMed  CAS  Google Scholar 

  • Furimsky M, Moon TW, Perry SF (2000) Evidence for the role of a Na+/HCO3- cotransporter in trout hepatocyte pHi regulation. J Exp Biol 203:2201–2208

    PubMed  CAS  Google Scholar 

  • Garcia-Romeu F, Cossins AR, Motais R (1991) Cell volume regulation by trout erythrocytes: characteristics of the transport systems activated by hypotonic swelling. J Physiology 440:547–567

    CAS  Google Scholar 

  • Gidon S, Sihra T (1989) Characterization of a H+-ATPase in rat brain synaptic vesicles. Coupling to l-glutamate transport. J Biol Chem 264(14):8281–8288

    Google Scholar 

  • Giffard RG, Papadopoulos MC, van Hooft JA, Xu L, Guiffrida R, Monyer H (2000) The electrogenic sodium bicarbonate cotransporter: developmental expression in rat brain and possible role in acid vulnerability. J Neurosci 20(3):1001–1008

    PubMed  CAS  Google Scholar 

  • Gusev GP, Agalakova NI, Lapin AV (1996) Activation of the Na+–K+ pump in frog erythrocytes by catecholamines and phosphodiesterase blockers. Biochem Pharmaco 52(9):1347–1353

    Article  CAS  Google Scholar 

  • Harada K, Matsuoka H, Nakamura J, Fukuda M, Inoue M (2010) Storage of GABA in chromaffin granules and not in synaptic-like microvesicles in rat adrenal medullary cells. J Neurochem 114:617–626

    Article  PubMed  CAS  Google Scholar 

  • Hoffman EK, Dunham PB (1995) Membrane mechanisms and intracellular signaling in cell volume regulation. Int Rev Cytol 161:173–262

    Article  Google Scholar 

  • Hume JR, Duan D, Coller ML, Yamazaki J, Horowitz B (2000) Anion transport in heart. Physiol Rev 80(1):31–81

    PubMed  CAS  Google Scholar 

  • Jamshidi N, Edwards JS, Fahland T, Church GM, Palsson BO (2001) Dynamic simulation of the human red blood cell metabolic network. Bioinform 17(3):286–287

    Article  CAS  Google Scholar 

  • Jamshidi N, Wiback S, Palsson BO (2002) In silico model-driven assessment of the effects of single nucleotide polymorphisms (SNPs) on human red blood cell metabolism. Genome Res 12(11):1687–1692

    Article  PubMed  CAS  Google Scholar 

  • Joshi A, Palsson BO (1989) Metabolic dynamics in the human red cell: part I. a comprehensive kinetic model. J Theor Biol 141(4):515–528

    Article  PubMed  CAS  Google Scholar 

  • Lew VL, Bookchin RM (1986) Volume, pH and ion-content regulation in human red cells: analysis of transient behavior with an integrated model. J Membr Biol 92:57–74

    Article  PubMed  CAS  Google Scholar 

  • Lluch MM, de la Sierra A, Poch E, Coca A, Aguilera MT, Compte M, Urbano-Marquez A (1996) Erythrocyte sodium transport, intraplatelet pH, and calcium concentration in salt-sensitive hypertension. Hypertens 27(4):919–925

    Article  CAS  Google Scholar 

  • Luo Ch-H, Rudy Y (1991) A model of the ventricular cardiac action potential, depolarization, repolarization and their interaction. Circ Res 68:1501–1526

    Article  PubMed  CAS  Google Scholar 

  • Luo Ch-H, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. Circ Res 74(6):1071–1096

    Article  PubMed  CAS  Google Scholar 

  • MacManus ML, Churchwell KB, Strange K (1995) Regulation of cell volume in health and disease. N Engl J Med 9:1260–1266

    Google Scholar 

  • Marhl M, Schuster S, Brumen M, Heinrich R (1998) Modelling oscillations of calcium and endoplasmic reticulum transmembrane potential. Role ot the signaling and buffering proteins and of the size Ca2 + sequestering ER subcompartments Bioelectroch Bioener 46(1):79–90

    Google Scholar 

  • Meissner G (2001) Ca2 + release from sarcoplasmic reticulum. In: Sperelakis N (ed) Cell physiology sourcebook, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Melkikh AV, Seleznev VD (2007) Models of active transport of neurotransmitters in synaptic vesicles. J Theor Biol 248(2):350–353

    Article  PubMed  CAS  Google Scholar 

  • Melkikh AV, Seleznev VD (2012) Mechanisms and models of the active transport of ions and the transformation of energy in intracellular compartments. Prog Biophys Mol Bio 109(1–2):33–57

    Article  CAS  Google Scholar 

  • Melkikh AV, Sutormina MI (2008) Model of active transport of ions in cardiac cell. J Theor Biol 252(2):247–254

    Article  PubMed  CAS  Google Scholar 

  • Melkikh AV, Sutormina MI (2010) A model of active transport of ions in hepatocytes. Biophys 55(1):67–70

    Article  Google Scholar 

  • Mulquiney PJ, Bubb WA, Kuchel PW (1999) Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: in vivo kinetic characterization of 2,3-bisphosphoglycerate synthase/phosphatase using 13C and 31P NMR. Biochem J 342(3):567–580

    Article  PubMed  CAS  Google Scholar 

  • Murphy E, Coll K, Rich TL, Williamson JR (1980) Hormonal effects on calcium homeostasis in isolated hepatocytes. J Biol Chem 255:6600–6608

    PubMed  CAS  Google Scholar 

  • Murphy E (2000) Mysteries of magnesium homeostasis. Circ Res 86(3):245–248. doi: 10.1161/01.RES.86.3.245

    Article  PubMed  CAS  Google Scholar 

  • Nicholls JG, Martin AR, Wallace BG, Fuchs PA (2001) From neuron to brain, 4th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Raupach T, Ballanyi K (2004) Intracellular pH and KATP channel activity in dorsal vagal neurons of juvenile rats in situ during metabolic disturbances. Brain Res 1017:137–145

    Article  PubMed  CAS  Google Scholar 

  • Sarkadi B, Parker JC (1991) Activation of ion transport pathways by changes in cell volume. Biochim Biophys Acta 1071(4):407–427

    Article  PubMed  CAS  Google Scholar 

  • Shannon TR, Chu G, Kranias EG, Bers DM (2001) Phospholamban decrease the energetic efficiency of the sarcoplasmic reticulum ca pump. J Biol Chem 276(10):7195–7201

    Article  PubMed  CAS  Google Scholar 

  • Shannon TR, Ginzburg KS, Bers DM (2000) Reverse mode of the sarcoplasmic reticulum calcium pump and load-dependent cytosolic calcium decline in voltage-clamped cardiac ventricular myocytes. Biophysical J 78:322–333

    Article  CAS  Google Scholar 

  • Sillau AH, Escobales N, Juarbe C (1996) Differences in membrane ion transport between hepatocytes from the periportal and the pericentral areas of the liver lobule. Experientia 52:554–557

    Article  PubMed  CAS  Google Scholar 

  • Sperelakis N (2000) Physiology and Pathophysiology of the Heart, 4th edn. Academic Publishers, Boston

    Google Scholar 

  • Sperelakis N, Gonzales-Serratos H (2001) Skeletal muscle action potentials. In: Sperelakis N (ed) Cell physiology sourcebook, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Sriboonlue P, Jaipakdee S, Jirakulsomchok D, Mairiang E, Tosukhowong P, Prasongwatana V, Savok S (2005) Changes in erythrocyte contents of potassium, sodium and magnesium and Na, K-pump activity after the administration of potassium and magnesium salts. J Med Assoc Thai 87(12):1506–1512

    Google Scholar 

  • Swietach P, Tiffert T, Mauritz JMA, Seear R, Esposito A, Kaminski CF, Lew VL, Vaughan-Jones RD (2010) Hydrogen ion dynamics in human red blood cells. J Physiol 588:4995–5014

    Article  PubMed  CAS  Google Scholar 

  • Tabb JS, Kish PE, Van Dyke R, Ueda T (1992) Glutamate transport into synaptic vesicles. roles of membrane potential, pH gradient and intravesicular pH. J Biol Chem 267(22):15412–15418

    PubMed  CAS  Google Scholar 

  • Werner A, Heinrich R (1985) A kinetic model for the interaction of energy metabolism and osmotic states of human erythrocytes. Analysis of the stationary “in vivo” state and of time dependent variations under blood preservation conditions. Biomed Biochim Acta 44(2):185–212

    PubMed  CAS  Google Scholar 

  • Yachie-Kinoshita A, Nishino T, Shimo H, Suematsu M, Tomita M (2010) A metabolic model of human erythrocytes: practical application of the E-cell simulation environment. J Biomed Biotechnol ID 642420. doi:10.1155/2010/642420

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Melkikh .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Melkikh, A., Sutormina, M. (2013). Models of Ion Transport in Mammalian Cells. In: Developing Synthetic Transport Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5893-3_2

Download citation

Publish with us

Policies and ethics