Skip to main content

Chemotherapy- and Radiation-Induced Accelerated Senescence: Implications for Treatment Response, Tumor Progression and Cancer Survivorship

  • Chapter
  • First Online:
Tumor Dormancy, Quiescence, and Senescence, Volume 1

Part of the book series: Tumor Dormancy and Cellular Quiescence and Senescence ((DOQU,volume 1))

  • 1500 Accesses

Abstract

Standard chemotherapy and radiotherapy are designed to eradicate malignancies by depriving tumor cells of their reproductive potential. Traditionally, it has been assumed that the loss of proliferative potential by cancer cells predominantly involves the triggering of cell death via apoptosis. However, it is becoming clear that cancer cells derived from solid tumors often undergo rapid and widespread induction of senescence following exposure to DNA damaging therapeutic agents. Tumor cells undergoing this accelerated senescence response share several cellular and molecular features with replicatively aged cells, including activation of DNA damage response pathways and a similar senescence-associated secretory pattern. Here, we discuss accelerated senescence in response to chemotherapy and radiation focusing on the potential implications for treatment response, tumor progression, and cancer survivorship. One emerging theme is that the persistence of metabolically active, senescent cells plays an active and diverse role in shaping the tumor microenvironment. There is hope that a better understanding of the molecular mechanisms (1) initiating and maintaining senescence in cancer cells and (2) underlying the senescence-associated bystander effects in tumor and non-tumor cells will lead to the future development of more efficacious and less toxic cancer treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bartsch R, Wenzel C, Pluschnig U, Hussian D, Sevelda U, Locker GJ, Mader R, Zielinski CC, Steger GG (2006) Oral vinorelbine alone or in combination with trastuzumab in advanced breast cancer: results from a pilot trial. Cancer Chemother Pharmacol 57:554–558

    Article  PubMed  CAS  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    Article  PubMed  CAS  Google Scholar 

  • Buttiglieri S, Ruella M, Risso A, Spatola T, Silengo L, Avvedimento EV, Tarella C (2011) The aging effect of chemotherapy on cultured human mesenchymal stem cells. Exp Hematol 39:1171–1181

    Article  PubMed  CAS  Google Scholar 

  • Campisi J (2011) Cellular senescence: putting the paradoxes in perspective. Curr Opin Genet Dev 21:107–112

    Article  PubMed  CAS  Google Scholar 

  • Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

    Article  PubMed  CAS  Google Scholar 

  • Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Quirantes R, Segura-Carretero A, Micol V, Joven J, Bosch-Barrera J, Del Barco S, Martin-Castillo B, Vellon L, Menendez JA (2012) Metformin lowers the threshold for stress-induced senescence: a role for the microRNA-200 family and miR-205. Cell Cycle 11:1235–1246

    Article  PubMed  CAS  Google Scholar 

  • Di X, Bright AT, Bellott R, Gaskins E, Robert J, Holt S, Gewirtz D, Elmore L (2008) A chemotherapy-associated senescence bystander effect in breast cancer cells. Cancer Biol Ther 7:864–872

    Article  PubMed  CAS  Google Scholar 

  • Diller L, Chow EJ, Gurney JG, Hudson MM, Kadin-Lottick NS, Kawashima TI, Leisenring WM, Meacham LR, Mertens AC, Mulrooney DA et al (2009) Chronic disease in the childhood cancer survivor study cohort: a review of published findings. J Clin Oncol 27:2339–2355

    Article  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  PubMed  CAS  Google Scholar 

  • Elmore LW, Rehder CW, Di X, McChesney PA, Jackson-Cook CK, Gewirtz DA, Holt SE (2002) Adriamycin-induced senescence in breast tumor cells involves functional p53 and telomere dysfunction. J Biol Chem 277:35509–35515

    Article  PubMed  CAS  Google Scholar 

  • Elmore LW, Di X, Dumur C, Holt SE, Gewirtz DA (2005) Evasion of a single-step, chemotherapy-induced senescence in breast cancer cells: implications for treatment response. Clin Cancer Res 2005(11):2637–2643

    Article  Google Scholar 

  • Elzi DJ, Lai Y, Song M, Hakala K, Weintraub ST, Shiio Y (2012) Plasminogen activator inhibitor 1—insulin-like growth factor binding protein 3 cascade regulates stress-induced senescence. Proc Natl Acad Sci USA 109(30):12052–12057

    Article  PubMed  CAS  Google Scholar 

  • Epel ES (2009) Psychological and metabolic stress: a recipe for accelerated cellular aging? Hormones (Athens) 8:7–22

    Google Scholar 

  • Francis MP, Sachs PC, Elmore LW, Holt SE (2010) Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction. Organogenesis 6:11–14

    Article  PubMed  Google Scholar 

  • Franco OE, Shaw AK, Strand DW, Hayward SW (2010) Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 21:33–39

    Article  PubMed  CAS  Google Scholar 

  • Gewirtz DA, Holt SE, Elmore LW (2008) Accelerated senescence: an emerging role in tumor cell response to chemotherapy and radiation. Biochem Pharmacol 76:947–957

    Article  PubMed  CAS  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  PubMed  CAS  Google Scholar 

  • Hemann MT, Narita M (2007) Oncogenes and senescence: breaking down in the fast lane. Genes Dev 21:1–5

    Article  PubMed  CAS  Google Scholar 

  • Jackson JG, Pant V, Li Q, Chang LL, Quintas-Cardama A, Garza D, Tavana O, Yang P, Manshouri T, Li Y, El-Naggar AK, Lozano G (2012) p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. Cancer Cell 21:793–806

    Article  PubMed  CAS  Google Scholar 

  • Jones KR, Elmore LW, Jackson-Cook C, Demasters G, Povirk LF, Holt SE, Gewirtz DA (2005) p53-Dependent accelerated senescence induced by ionizing radiation in breast tumour cells. Int J Radiat Biol 81:445–458

    Article  PubMed  CAS  Google Scholar 

  • Lee JJ, Nam CE, Cho SH, Park KS, Chung IJ, Kim HJ (2003) Telomere length shortening in non-Hodgkin’s lymphoma patients undergoing chemotherapy. Ann Hematol 82:492–495

    Article  PubMed  Google Scholar 

  • Li GZ, Eller MS, Firoozabadi R, Gilchrest BA (2003) Evidence that exposure of the telomere 3’ overhang sequence induces senescence. Proc Natl Acad Sci USA 100:527–531

    Article  PubMed  CAS  Google Scholar 

  • Li P, Hou M, Lou F, Bjorkholm M, Xu D (2012) Telomere dysfunction induced by chemotherapeutic agents and radiation in normal human cells. Int J Biochem Cell Biol 44:1531–1540

    Article  PubMed  CAS  Google Scholar 

  • Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM (2009) New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care 32:1620–1625

    Article  PubMed  CAS  Google Scholar 

  • Narita M (2007) Cellular senescence and chromatin organisation. Br J Cancer 96:686–691

    Article  PubMed  CAS  Google Scholar 

  • Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, Friedman DL, Marina N, Hobbie W, Kadan-Lottick NS et al (2006) Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 355:1572–1582

    Article  PubMed  CAS  Google Scholar 

  • Portugal J, Mansilla S, Bataller M (2010) Mechanisms of drug-induced mitotic catastrophe in cancer cells. Curr Pharm Des 16:69–78

    Article  PubMed  CAS  Google Scholar 

  • Rodier F, Munoz DP, Teachenor R, Chu V, Le O, Bhaumik D, Coppe JP, Campeau E, Beausejour CM, Kim SH, Davalos AR, Campisi J (2011) DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci 124:68–81

    Article  PubMed  CAS  Google Scholar 

  • Roninson IB (2003) Tumor cell senescence in cancer treatment. Cancer Res 63:2705–2715

    PubMed  CAS  Google Scholar 

  • Rowland JH (2008) Cancer survivorship: rethinking the cancer control continuum. Semin Oncol Nurs 24:145–152

    Article  PubMed  Google Scholar 

  • Salminen A, Kauppinen A, Kaarniranta K (2012) Emerging role of NF-kappaB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal 24:835–845

    Article  PubMed  CAS  Google Scholar 

  • Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM, Lowe SW (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109:335–346

    Article  PubMed  CAS  Google Scholar 

  • Schroder CP, Wisman GB, de Jong S, van der Graaf WT, Ruiters MH, Mulder NH, de Leij LF, van der Zee AG, de Vries EG (2001) Telomere length in breast cancer patients before and after chemotherapy with or without stem cell transplantation. Br J Cancer 84:1348–1353

    Article  PubMed  CAS  Google Scholar 

  • Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Di Gialleonardo V, Cippitelli M, Fionda C, Petrucci MT, Guarini A, Foa R, Santoni A (2009) ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113:3503–3511

    Article  PubMed  CAS  Google Scholar 

  • te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62:1876–1883

    Google Scholar 

  • Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665

    Article  PubMed  CAS  Google Scholar 

  • von Figura G, Hartmann D, Song Z, Rudolph KL (2009) Role of telomere dysfunction in aging and its detection by biomarkers. J Mol Med (Berl) 87:1165–1171

    Article  Google Scholar 

  • Wang Y, Zhu S, Cloughesy TF, Liau LM, Mischel PS (2004) p53 disruption profoundly alters the response of human glioblastoma cells to DNA topoisomerase I inhibition. Oncogene 23:1283–1290

    Article  PubMed  CAS  Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    Article  PubMed  CAS  Google Scholar 

  • Yoon HJ, Choi IY, Kang MR, Kim SS, Muller MT, Spitzner JR, Chung IK (1998) DNA topoisomerase II cleavage of telomeres in vitro and in vivo. Biochim Biophys Acta 1395:110–120

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Institutes of Health KO1 CA105050-01A131, a Department of Defense BCRP Concept Award (BC085416), and the Department of Pathology at Virginia Commonwealth University (to LWE). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH or DOD. We regret that we were unable to cite all relevant studies in the literature. Due to the fact that, in several circumstances, no appropriate reviews were available, it was necessary to select one or two primary papers while other equally relevant papers were omitted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne W. Elmore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bristol, M.L., Elmore, L.W. (2013). Chemotherapy- and Radiation-Induced Accelerated Senescence: Implications for Treatment Response, Tumor Progression and Cancer Survivorship. In: Hayat, M. (eds) Tumor Dormancy, Quiescence, and Senescence, Volume 1. Tumor Dormancy and Cellular Quiescence and Senescence, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5958-9_20

Download citation

Publish with us

Policies and ethics