Skip to main content

Abstract

Numerous drug delivery colloidal systems are formulated using polymers or surfactants or a mixture of both, typically due to their self-assembly properties. Molecular self-assembly creates the possibility to dissolve and protect drugs from adverse external environments. Therefore, it is important to understand the interactions behind the self-assembly phenomena of surfactant and polymer molecules, polymer-polymer and polymer-surfactant mixtures. A number of colloidal structures used in drug delivery formulations such as micelles, vesicles, liquid crystalline phases, microemulsions, polymer gels, aerosols, polymer-polymer and polymer-surfactant complexes will be illustrated in this chapter and their main physicochemical properties will be highlighted, keeping in mind their relevance to the drug delivery research field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schramm LL (2000) Surfactants: fundamentals and applications in the petroleum industry. University Press, Cambridge

    Book  Google Scholar 

  2. Goodwin J (2004) Colloids and interfaces with surfactants and polymers—an introduction. Wiley, Chichester

    Book  Google Scholar 

  3. Farn RJ (2006) Chemistry and technology of surfactants. Blackwell Publishing Ltd, Oxford

    Book  Google Scholar 

  4. Malmsten M (2002) Surfactants and polymers in drug delivery. Marcel Dekker, Inc, New York

    Book  Google Scholar 

  5. Holmberg H, Jonsson B, Kronbreg B, Lindman B (2003) Surfactants and polymers in aqueous solution, 2nd edn. Wiley, Hoboken

    Google Scholar 

  6. Tadros TF (2005) Applied surfactants—principles and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  7. Pfeiffer W, Henkel T, Sackmann E, Knoll W, Richter D (1989) Local dynamics of lipid bilayers studied by incoherent quasi-elastic neutron-scattering. Europhys Lett 8:201–206

    Article  CAS  Google Scholar 

  8. Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes. Wiley, New York

    Google Scholar 

  9. Hartley G (1936) Aqueous solutions of paraffin-chain salts. Herman & Cie, Paris

    Google Scholar 

  10. Israelachvili JN (2002) Intermolecular and surface forces. Academic, London

    Google Scholar 

  11. Evans DF, Wennerstrom H (1994) The colloidal domain: where physics, chemistry, biology and technology meet. VCH Publishers Inc, New York

    Google Scholar 

  12. Karlström G (1985) A new model for upper and lower critical solution temperatures in poly (ethylene oxide) solutions. J Chem Phys 89:4962–4964

    Article  Google Scholar 

  13. Olsson U, Wennerstrom H (1994) Globular and bicontinuous phases of nonionic surfactant films. Adv Colloid Interface Sci 49:113–146

    Article  CAS  Google Scholar 

  14. Wennerström H, Lindman B (1979) Micelles – physical-chemistry of surfactant association. Phys Rep Rev Sec Phys Lett 52:1–86

    Google Scholar 

  15. Strey R (1994) Microemulsion microstructure and interfacial curvature. Colloid Polym Sci 272:1005–1019

    Article  CAS  Google Scholar 

  16. Lindman B, Karlstrom G (2009) Nonionic polymers and surfactants: temperature anomalies revisited. Comptes Rendus Chimie 12:121–128

    Article  CAS  Google Scholar 

  17. Mitchell DJ, Tiddy GJT, Waring L, Bostock T, Mcdonald MP (1983) Phase-behavior of polyoxyethylene surfactants with water—mesophase structures and partial miscibility (cloud points). J Chem Soc Faraday Trans 79:975–1000

    Article  CAS  Google Scholar 

  18. Chernik GG (2000) Phase studies of surfactant – water systems. Curr Opin Colloid Interface Sci 4:381–390

    Article  Google Scholar 

  19. Porte G, Appell J, Bassereau P, Marignan J (1989) L-alpha to l3 – a topology driven transition in phases of infinite fluid membranes. J Phys France 50:1335–1347

    Article  CAS  Google Scholar 

  20. Andersson D, Wennerström H, Olsson U (1989) Isotropic bicontinuous solutions in surfactant solvent systems – the l3 phase. J Phys Chem B 93:4243–4253

    Article  Google Scholar 

  21. Golubovic L (1994) Passages and droplets in lamellar fluid membrane phases. Phys Rev E 50:R2419–R2422

    Article  CAS  Google Scholar 

  22. Nallet F (1991) Membrane fluctuations in dilute lamellar phases. Langmuir 7:1861–1863

    Article  CAS  Google Scholar 

  23. Skouri M, Marignan J, Appell J, Porte G (1991) Fluid membranes in the semirigid regime – scale-invariance. J Phys II France 1:1121–1132

    Article  CAS  Google Scholar 

  24. Helfrich W (1973) Elastic properties of lipid bilayers – theory and possible experiments. Z Naturforsch C 28:693–703

    PubMed  CAS  Google Scholar 

  25. Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73:137–172

    Article  PubMed  CAS  Google Scholar 

  26. Drummond CJ, Fong C (2000) Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opin Colloid Interface Sci 4:449–456

    Article  Google Scholar 

  27. Shah JC, Sadhale Y, Chilukuri DM (2001) Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev 47:229–250

    Article  PubMed  CAS  Google Scholar 

  28. Medronho B (2009) Shear induced transitions in complex fluids: planar lamellae and multilamellar vesicles. Dissertation, University of Coimbra

    Google Scholar 

  29. Olea D, Faure C (2003) Quantitative study of the encapsulation of glucose oxidase into multilamellar vesicles and its effect on enzyme activity. J Chem Phys 119:6111–6118

    Article  CAS  Google Scholar 

  30. Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45:89–121

    Article  PubMed  CAS  Google Scholar 

  31. Dang JM, Leong KW (2006) Natural polymers for gene delivery and tissue engineering. Adv Drug Deliv Rev 58:487–499

    Article  PubMed  CAS  Google Scholar 

  32. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, New York

    Google Scholar 

  33. Cosgrove T, Ryan K (1990) NMR and neutron-scattering studies on poly(ethylene oxide) terminally attached at the polystyrene/water interface. Langmuir 6:136–142

    Article  CAS  Google Scholar 

  34. Frank DB (1990) Magnetic resonance of polymers at surfaces. Colloids Surf 45:361–376

    Article  Google Scholar 

  35. Hoogendam CW, de Keizer A, Cohen Stuart MA, Bijsterbosch BH, Smit JAM, van Dijk JAPP, van der Horst PM, Batelaan JG (1998) Persistence length of carboxymethyl cellulose as evaluated from size exclusion chromatography and potentiometric titrations. Macromolecules 31:6297–6309

    Article  CAS  Google Scholar 

  36. Huggins ML (1942) Theory of solutions of high polymers. J Am Chem Soc 64:1712–1719

    Article  CAS  Google Scholar 

  37. Huggins ML (1942) Some properties of solutions of long-chain compounds. J Phys Chem 46:151–158

    Article  CAS  Google Scholar 

  38. Torchilin VP (2004) Targeted polymeric micelles for delivery of poorly soluble drugs. Cellular and molecular life sciences. Cell Mol Life Sci 61:2549–2559

    Article  PubMed  CAS  Google Scholar 

  39. Zhulina EB, Adam M, LaRue I, Sheiko SS, Rubinstein M (2005) Diblock copolymer micelles in a dilute solution. Macromolecules 38:5330–5351

    Article  CAS  Google Scholar 

  40. Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297:967–973

    Article  PubMed  CAS  Google Scholar 

  41. Howse JR, Jones RA, Battaglia G, Ducker RE, Leggett GJ, Ryan AJ (2009) Templated formation of giant polymer vesicles with controlled size distributions. Nat Mater 8:507–511

    Article  PubMed  CAS  Google Scholar 

  42. Lindman B, Karlstrom G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81

    Article  CAS  Google Scholar 

  43. Antunes FE, Gentile L, Tavano L, Rossi O (2009) Rheological characterization of the thermal gelation of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide)co-Acrylic Acid. Appl Rheol 19:42064–42072

    Google Scholar 

  44. Kjøniksen AL, Zhu K, Pamies R, Nyström B (2008) Temperature-induced formation and contraction of micelle-like aggregates in aqueous solutions of thermoresponsive short-chain copolymers. J Phys Chem B 112:3294–3299

    Article  PubMed  CAS  Google Scholar 

  45. Alexandridis P, Zhou D, Khan A (1996) Lyotropic liquid crystallinity in amphiphilic block copolymers: temperature effects on Phase behavior and structure for poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymers of different composition. Langmuir 12:2690–2700

    Article  CAS  Google Scholar 

  46. Green MS, Tobolsky AV (1946) A new approach to the theory of relaxing polymeric media. J Chem Phys 14:80–92

    Article  CAS  Google Scholar 

  47. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  48. Piculell L, Lindman B (1992) Association and segregation in aqueous polymer/polymer, polymer/surfactant, and surfactant/surfactant mixtures: similarities and differences. Adv Colloid Interface Sci 41:149–178

    Article  CAS  Google Scholar 

  49. Tanaka R, Meadows J, Williams PA, Phillips GO (1992) Interaction of hydrophobically modified hydroxyethyl cellulose with various added surfactants. Macromolecules 25:1304–1310

    Article  CAS  Google Scholar 

  50. Semenov AN, Joanny JF, Khokhlov AR (1995) Associating polymers: equilibrium and linear viscoelasticity. Macromolecules 28:1066–1075

    Article  CAS  Google Scholar 

  51. Witten TA (1988) Associating polymers and shear thickening. J Phys France 49:1055–1063

    Article  CAS  Google Scholar 

  52. Cui H, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Biopolymers 94:1–18

    Article  PubMed  CAS  Google Scholar 

  53. Hubbard A (2002) Encyclopedia of surface and colloid science. Marcel Dekker, New York

    Google Scholar 

  54. Senff H, Richtering W (1999) Temperature sensitive microgel suspensions: colloidal phase behavior and rheology of soft spheres. J Chem Phys 111:1705–1711

    Article  CAS  Google Scholar 

  55. Jeong B, Gutowska A (2002) Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol 20:305–311

    Article  PubMed  CAS  Google Scholar 

  56. Murray MJ, Snowden MJ (1995) The preparation, characterisation and applications of colloidal microgels. Adv Colloid Interface Sci 54:73–91

    Article  CAS  Google Scholar 

  57. Lopez VC, Snowden MJ (2003) The role of colloidal microgels in drug delivery. Drug Delivery Sys Sci 3:19–23

    CAS  Google Scholar 

  58. Varma MVS, Kaushal AM, Garg S (2005) Influence of micro-environmental pH on the gel layer behavior and release of a basic drug from various hydrophilic matrices. J Control Release 103:499–510

    Article  PubMed  CAS  Google Scholar 

  59. Lopez VC, Hadgraft J, Snowden MJ (2005) The use of colloidal microgels as a (trans)dermal drug delivery system. Int J Pharm 292:137–147

    Article  PubMed  CAS  Google Scholar 

  60. Morris GE, Vincent B, Snowden MJ (1997) The interaction of thermosensitive anionic microgel with metal ion solution. Prog Colloid Polymer Sci 105:16–22

    Article  CAS  Google Scholar 

  61. Byrne R, Benito-Lopez F, Diamond D (2010) Materials science and the sensor revolution. Mater Today 13:16–23

    Article  CAS  Google Scholar 

  62. Saunders BR, Vincent B (1999) Microgel particles as model colloids: theory, properties and applications. Adv Colloid Interface Sci 80:1–25

    Article  CAS  Google Scholar 

  63. Barreiro-Iglesias R, Alvarez-Lorenzo C, Concheiro A (2003) Poly(acrylic acid) microgels (carbopol® 934)/surfactant interactions in aqueous media: Part II: ionic surfactants. Int J Pharm 258:179–191

    Article  PubMed  CAS  Google Scholar 

  64. Meid J, Friedrich T, Tieke B, Lindner P, Richtering W (2011) Composite hydrogels with temperature sensitive heterogeneities: influence of gel matrix on the volume phase transition of embedded poly-(N-isopropylacrylamide) microgels. Phys Chem Chem Phys 13:3039–3047

    Article  PubMed  CAS  Google Scholar 

  65. Berndt I, Popescu C, Wortmann F-J, Richtering W (2006) Mechanics versus thermodynamics: swelling in multiple-temperature-sensitive core-shell microgels. Angew Chemie Int Ed Engl 45:1081–1085

    Article  CAS  Google Scholar 

  66. Kaneda I, Vincent B (2004) Swelling behavior of PMMA-g-PEO microgel particles by organic solvents. J Colloid Interface Sci 274:49–54

    Article  PubMed  CAS  Google Scholar 

  67. Pillai O, Panchagnula R (2001) Polymers in drug delivery. Curr Opin Chem Biol 5:447–451

    Article  PubMed  CAS  Google Scholar 

  68. Keerl M, Richtering W (2007) Synergistic depression of volume phase transition temperature in copolymer microgels. Colloid Polym Sci 285:471–474

    Article  CAS  Google Scholar 

  69. Goddard ED, Hannan RB, Matteson GH (1977) Dye solubilization by a cationic polymer/anionic surfactant system. J Colloid Interface Sci 60:214–215

    Article  CAS  Google Scholar 

  70. Leung PS, Goddard ED, Han C, Glinka CJ (1985) A study of polycation-anionic-surfactant systems. Colloids Surf 13:47–62

    Article  CAS  Google Scholar 

  71. Leung PS, Goddard ED (1991) Gels from dilute polymer/surfactant solutions. Langmuir 7:608–609

    Article  CAS  Google Scholar 

  72. Lee BH, Christian SD, Tucker EE, Scamehorn JF (1991) Effects of an anionic polyelectrolyte on the solubilization of mono- and dichlorophenols by aqueous solutions of N-hexadecylpyridinium chloride. Langmuir 7:1332–1335

    Article  CAS  Google Scholar 

  73. Magny B, Iliopoulos I, Zana R, Audebert R (1994) Mixed micelles formed by cationic surfactants and anionic hydrophobically modified polyelectrolytes. Langmuir 10:3180–3187

    Article  CAS  Google Scholar 

  74. Ilias I (1998) Association between hydrophobic polyelectrolytes and surfactants. Curr Opin Colloid Interface Sci 3:493–498

    Article  Google Scholar 

  75. Goddard ED, Pethica BA (1951) On detergent-protein interactions. J Chem Soc 2659–2663

    Google Scholar 

  76. Laurent TC, Scott JE (1964) Molecular weight fractionation of polyanions by cetylpyridinium chloride in salt solutions. Nature 16:661–662

    Article  Google Scholar 

  77. Kwak JCT (1998) Polymer-surfactant systems. Marcel Dekker, New York

    Google Scholar 

  78. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    Article  PubMed  CAS  Google Scholar 

  79. Thomas A, Goettmann F, Antonietti M (2008) Hard templates for soft materials: creating nanostructured organic materials. Chem Mater 20:738–755

    Article  CAS  Google Scholar 

  80. Nizri G, Makarsky A, Magdassi S, Talmon Y (2009) Nanostructures formed by self-assembly of negatively charged polymer and cationic surfactants. Langmuir 25:1980–1985

    Article  PubMed  CAS  Google Scholar 

  81. Nizri G, Magdassi S, Schmidt J, Cohen Y, Talmon Y (2004) Microstructural characterization of micro- and nanoparticles formed by polymer-surfactant interactions. Langmuir 20:4380–4385

    Article  PubMed  CAS  Google Scholar 

  82. Goddard ED, Ananthapadmanabhan KP (1993) Interactions of surfactants with polymers and proteins. Taylor & Francis, Boca Raton

    Google Scholar 

  83. Dualeh AJ, Steiner CA (1990) Hydrophobic microphase formation in surfactant solutions containing an amphiphilic graft copolymer. Macromolecules 23:251–255

    Article  CAS  Google Scholar 

  84. Guillemet F, Piculell L (1995) Interactions in aqueous mixtures of hydrophobically modified polyelectrolyte and oppositely charged surfactant. mixed micelle formation and associative phase separation. J Phys Chem 99:9201–9209

    Article  CAS  Google Scholar 

  85. Thuresson K, Nilsson S, Lindman B (1996) Effect of hydrophobic modification on phase-behavior and rheology in mixtures of oppositely charged polyelectrolytes. Langmuir 12:530–537

    Article  CAS  Google Scholar 

  86. Thuresson K, Lindman B, Nyström B (1997) Effect of hydrophobic modification of a nonionic cellulose derivative on the interaction with surfactants. Rheology. J Phys Chem B 101:6450–6459

    Article  CAS  Google Scholar 

  87. Karlberg M, Thuresson K, Piculell L, Lindman B (2004) Mixed solutions of hydrophobically modified graft and block copolymers. Colloids Surf A 236:159–164

    Article  CAS  Google Scholar 

  88. Piculell L, Egermayer M, Sjöström J (2003) Rheology of mixed solutions of an associating polymer with a surfactant. Why are different surfactants different? Langmuir 19:3643–3649

    Article  CAS  Google Scholar 

  89. Antunes FE, Marques EF, Miguel MG, Lindman B (2009) Polymer-vesicle association. Adv Colloid Interface Sci 147–148:18–35

    Article  PubMed  CAS  Google Scholar 

  90. Antunes FE, Lindman B, Miguel MG (2005) Mixed systems of hydrophobically modified polyelectrolytes: controlling rheology by charge and hydrophobe stoichiometry and interaction strength. Langmuir 21:10188–10196

    Article  PubMed  CAS  Google Scholar 

  91. Bergfeldt K, Piculell L, Linse P (1996) Segregation and association in mixed polymer solutions from flory-huggins model calculations. J Phys Chem 100:3680–3687

    Article  CAS  Google Scholar 

  92. Hefford RJ (1984) Polymer mixing in aqueous solution. Polymer 25:979–984

    Article  CAS  Google Scholar 

  93. Chun M-K, Cho C-S, Choi H-K (2001) A novel mucoadhesive polymer prepared by template polymerization of acrylic acid in the presence of poloxamer. J Appl Polymer Sci 79:1525–1530

    Article  CAS  Google Scholar 

  94. Dubin P, Bock J, Davis R, Schulz ND, Thies C (1994) Macromolecular complexes in chemistry and biology. Springer, Berlin

    Book  Google Scholar 

  95. Shenkov S, Baranovsky VY (1994) Complex formation between poly(methacrylic acid) and poly(propylene glycol) in aqueous solutions. J Polymer Sci A 32:1385–1387

    Article  CAS  Google Scholar 

  96. Cole ML, Whateley TL (1996) Interaction of nonionic block copolymeric (Poloxamer) surfactants with poly (Acrylic Acid), studied by photon correlation spectroscopy. J Colloid Interface Sci 180:421–427

    Article  CAS  Google Scholar 

  97. Wang Y, Goethals EJ, Du Prez FE (2004) Association behavior between end-functionalized block copolymers PEO-PPO-PEO and poly(acrylic acid). Macromol Chem Phys 205:1774–1781

    Article  CAS  Google Scholar 

  98. Barreiro-Iglesias R, Alvarez-Lorenzo C, Concheiro A (2003) Poly(acrylic acid) microgels (carbopol® 934)/surfactant interactions in aqueous media: Part I: nonionic surfactants. Int J Pharm 258:165–177

    Article  PubMed  CAS  Google Scholar 

  99. Costa T, Schillen K, Miguel MG, Lindman B, Seixas de Melo J (2009) Association of a hydrophobically modified polyelectrolyte and a block copolymer followed by fluorescence techniques. J Phys Chem B 113:6194–6204

    Article  PubMed  CAS  Google Scholar 

  100. dos Santos S, Luigjes B, Piculell L (2010) Associative phase behaviour and disintegration of copolymer aggregates on adding poly(acrylic acid) to aqueous solutions of a PEO-PPO-PEO triblock copolymer. Soft Matter 6:4756–4767

    Article  CAS  Google Scholar 

  101. Kabanov AV, Zezin AB (1984) A new class of complex water-soluble polyelectrolytes. Makroma Chem Suppl 6:259–276

    Article  CAS  Google Scholar 

  102. Chu DY, Thomas JK (1986) Effect of cationic surfactants on the conformation transition of poly(methacrylic acid). J Am Chem Soc 108:6270–6276

    Article  CAS  Google Scholar 

  103. Goddard ED (1986) Polymer-surfactant interaction part II. Polymer and surfactant of opposite charge. Colloids Surf 19:301–329

    Article  CAS  Google Scholar 

  104. Thalberg K, Lindman B (1989) Interaction between hyaluronan and cationic surfactants. J Phys Chem 93:1478–1483

    Article  CAS  Google Scholar 

  105. Thalberg K, Lindman B, Bergfeldt K (1991) Phase behavior of systems of polyacrylate and cationic surfactants. Langmuir 7:2893–2898

    Article  CAS  Google Scholar 

  106. Dias R, Mel'nikov S, Lindman B, Miguel MG (2000) DNA phase behavior in the presence of oppositely charged surfactants. Langmuir 16:9577–9583

    Article  CAS  Google Scholar 

  107. Lynch I, Sjöström J, Piculell L (2005) Reswelling of polyelectrolyte hydrogels by oppositely charged surfactants. J Phys Chem B 109:4258–4262

    Article  PubMed  CAS  Google Scholar 

  108. Thalberg K, Lindman B, Karlström G (1991) Phase behavior of a system of cationic surfactant and anionic polyelectrolyte: the effect of salt. J Phys Chem 95:6004–6011

    Article  CAS  Google Scholar 

  109. Ilekti P, Martin T, Cabane B, Piculell L (1999) Effects of polyelectrolytes on the structures and interactions of surfactant aggregates. J Phys Chem B 103:9831–9840

    Article  CAS  Google Scholar 

  110. Svensson A, Norrman J, Piculell L (2006) Phase behavior of polyion-surfactant ion complex salts: effects of surfactant chain length and polyion length. J Phys Chem B 110:10332–10340

    Article  PubMed  CAS  Google Scholar 

  111. Svensson A, Piculell L, Cabane B, Ilekti P (2002) A new approach to the phase behavior of oppositely charged polymers and surfactants. J Phys Chem B 106:1013–1018

    Article  CAS  Google Scholar 

  112. Svensson A, Piculell L, Karlsson L, Cabane B, Jonsson B (2003) Phase behavior of an ionic surfactant with mixed monovalent/polymeric counterions. J Phys Chem B 107:8119–8130

    Article  CAS  Google Scholar 

  113. dos Santos S, Lundberg D, Piculell L (2011) Responsive and evolving mixtures of a hydrolyzing cationic surfactant and oppositely charged polyelectrolytes. Soft Matter 7:5540–5544

    Article  CAS  Google Scholar 

  114. Fanun M (2010) Colloids in drug delivery. CRC Press/Taylor & Francis, Boca Raton

    Book  Google Scholar 

  115. Dias RS, Lindman B (2008) DNA interactions with polymers and surfactants. Wiley, Hoboken

    Book  Google Scholar 

  116. Costa D, Hansson P, Schneider S, Miguel MG, Lindman B (2006) Interaction between covalent DNA gels and a cationic surfactant. Biomacromolecules 7:1090–1095

    Article  PubMed  CAS  Google Scholar 

  117. Hansson P, Schneider S, Lindman B (2002) Phase separation in polyelectrolyte gels interacting with surfactants of opposite charge. J Phys Chem B 106:9777–9793

    Article  CAS  Google Scholar 

  118. Nilsson P, Hansson P (2005) Ion-exchange controls the kinetics of deswelling of polyelectrolyte microgels in solutions of oppositely charged surfactant. J Phys Chem B 109:23843–23856

    Article  PubMed  CAS  Google Scholar 

  119. Nilsson P, Hansson P (2007) Deswelling kinetics of polyacrylate gels in solutions of cetyltrimethylammonium bromide. J Phys Chem B 111:9770–9778

    Article  PubMed  CAS  Google Scholar 

  120. Nilsson P, Unga J, Hansson P (2007) Effect of salt and surfactant concentration on the structure of polyacrylate gel/surfactant complexes. J Phys Chem B 111:10959–10964

    Article  PubMed  CAS  Google Scholar 

  121. Morimoto N, Endo T, Ohtomi M, Iwasaki Y, Akiyoshi K (2005) Hybrid nanogels with physical and chemical cross-linking structures as nanocarriers. Macromol Biosci 5:710–716

    Article  PubMed  CAS  Google Scholar 

  122. Zhang Y, Zhu W, Wang B, Ding J (2005) A novel microgel and associated post-fabrication encapsulation technique of proteins. J Control Release 105:260–268

    Article  PubMed  CAS  Google Scholar 

  123. Murthy N, Thng YX, Schuck S, Xu MC, Frechet JM (2002) A novel strategy for encapsulation and release of proteins: hydrogels and microgels with acid-labile acetal cross-linkers. J Am Chem Soc 124:12398–12399

    Article  PubMed  CAS  Google Scholar 

  124. Bysell H, Mansson R, Hansson P, Malmsten M (2011) Microgels and microcapsules in peptide and protein drug delivery. Adv Drug Deliv Rev 63:1172–1185

    Article  PubMed  CAS  Google Scholar 

  125. Huang C-I, Olvera de la Cruz M (2002) Polyelectrolytes in multivalent salt solutions: monomolecular versus multimolecular aggregation. Macromol 35:976–986

    Article  CAS  Google Scholar 

  126. Dias RS, Svingen R, Gustavsson B, Lindman B, Miguel MG (2005) Electrophoretic properties of complexes between DNA and the cationic surfactant cetyltrimethylammonium bromide. Electrophoresis 26:2908–2917

    Article  PubMed  CAS  Google Scholar 

  127. Dias RS, Innerlohinger J, Glatter O, Miguel MG, Lindman B (2005) Coil-globule transition of DNA molecules induced by cationic surfactants: a dynamic light scattering study. J Phys Chem B 109:10458–10463

    Article  PubMed  CAS  Google Scholar 

  128. Gonzalez-Perez A, Carlstedt J, Dias RS, Lindman B (2010) Cyclodextrins in DNA decompaction. Colloids Surf B Biointerfaces 76:20–27

    Article  PubMed  CAS  Google Scholar 

  129. Costa D, Miguel MG, Lindman B (2007) Effect of additives on swelling of covalent DNA gels. J Phys Chem B 111:8444–8452

    Article  PubMed  CAS  Google Scholar 

  130. Izumrudov VA, Wahlund PO, Gustavsson PE, Larsson PO, Galaev IY (2003) Factors controlling phase separation in water-salt solutions of DNA and polycations. Langmuir 19:4733–4739

    Article  CAS  Google Scholar 

  131. Willmitzer L, Bode J, Wagner KG (1977) Phosphorylated protamines. II. Circular dichroism of complexes with DNA, dependency on ionic strength. Nucleic Acids Res 4:163–176

    Article  PubMed  CAS  Google Scholar 

  132. Raspaud E, Pelta J, de Frutos M, Livolant F (2006) Solubility and charge inversion of complexes of DNA and basic proteins. Phys Rev Lett 97:068103

    Article  PubMed  CAS  Google Scholar 

  133. Costa D, dos Santos S, Antunes F, Miguel MG, Lindman B (2006) Some novel aspects of DNA physical and chemical gels. ARKIVOC iv:161–172

    Google Scholar 

  134. Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A (2005) A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther 11:990–995

    Article  PubMed  CAS  Google Scholar 

  135. Putnam D, Gentry CA, Pack DW, Langer R (2001) Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc Natl Acad Sci USA 98:1200–1205

    Article  PubMed  CAS  Google Scholar 

  136. Chen DJ, Majors BS, Zelikin A, Putnam D (2005) Structure-function relationships of gene delivery vectors in a limited polycation library. J Control Release 103:273–283

    Article  PubMed  CAS  Google Scholar 

  137. Youan BB (2008) Impact of nanoscience and nanotechnology on controlled drug delivery. Nanomedicine (Lond) 3:401–406

    Article  Google Scholar 

  138. Silva GA (2009) Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system. Ann N Y Acad Sci 1199:221–230

    Article  CAS  Google Scholar 

  139. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    Article  PubMed  CAS  Google Scholar 

  140. Lynch I, Salvati A, Dawson KA (2009) Protein-nanoparticle interactions: what does the cell see? Nat Nanotechnol 4:546–547

    Article  PubMed  CAS  Google Scholar 

  141. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270

    Article  PubMed  CAS  Google Scholar 

  142. Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132:5761–5768

    Article  PubMed  CAS  Google Scholar 

  143. Goppert TM, Muller RH (2005) Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int J Pharm 302:172–186

    Article  PubMed  CAS  Google Scholar 

  144. Pandey R, Khuller GK (2005) Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb) 85:227–234

    Article  CAS  Google Scholar 

  145. De Campos AM, Sanchez A, Gref R, Calvo P, Alonso MJ (2003) The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur J Pharm Sci 20:73–81

    Article  PubMed  CAS  Google Scholar 

  146. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  PubMed  CAS  Google Scholar 

  147. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055

    Article  PubMed  CAS  Google Scholar 

  148. Liu GY, Li LY, Yang XL, Dai Z (2008) Preparation of silica/polymer hybrid microspheres and the corresponding hollow polymer microspheres with functional groups. Polymers Adv Technol 19:1922–1930

    Article  CAS  Google Scholar 

  149. Li W, Chen CY, Ye C, Wei TT, Zhao YL, Lao F, Chen Z, Meng H, Gao YX, Yuan H, Xing GM, Zhao F, Chai ZF, Zhang XJ, Yang FY, Han D, Tang XH, Zhang YG (2008) The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology 19:145102–145114

    Article  PubMed  CAS  Google Scholar 

  150. dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA (2011) Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS One 6:e24438

    Article  PubMed  CAS  Google Scholar 

  151. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Ann Rev Biochem 78:857–902

    Article  PubMed  CAS  Google Scholar 

  152. Parton RG, Richards AA (2003) Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4:724–738

    Article  PubMed  CAS  Google Scholar 

  153. Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y (2004) A quantum dot conjugated sugar ball and its cellular uptake on the size effects of endocytosis in the subviral region. J Am Chem Soc 126:6520–6521

    Article  PubMed  CAS  Google Scholar 

  154. Lu F, Wu SH, Hung Y, Mou CY (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5:1408–1413

    Article  PubMed  CAS  Google Scholar 

  155. Bexiga MG, Varela JA, Wang F, Fenaroli F, Salvati A, Lynch I, Simpson JC, Dawson KA (2011) Cationic nanoparticles induce caspase 3-, 7- and 9-mediated cytotoxicity in a human astrocytoma cell line. Nanotoxicology 5:557–567

    Article  PubMed  CAS  Google Scholar 

  156. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  PubMed  CAS  Google Scholar 

  157. Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Tron K, Nienhaus GU, Musyanovych A, Mailander V, Landfester K, Simmet T (2011) Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano 5:1657–1669

    Article  PubMed  CAS  Google Scholar 

  158. Fubini B, Ghiazza M, Fenoglio I (2010) Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4:347–363

    Article  PubMed  CAS  Google Scholar 

  159. Tsai YY, Huang YH, Chao YL, Hu KY, Chin LT, Chou SH, Hour AL, Yao YD, Tu CS, Liang YJ, Tsai CY, Wu HY, Tan SW, Chen HM (2011) Identification of the nanogold particle-induced endoplasmic reticulum stress by omic techniques and systems biology analysis. ACS Nano 5:9354–9369

    Article  PubMed  CAS  Google Scholar 

  160. Lesniak A, Campbell A, Monopoli MP, Lynch I, Salvati A, Dawson KA (2010) Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials 31:9511–9518

    Article  PubMed  CAS  Google Scholar 

  161. Vacha R, Martinez-Veracoechea FJ, Frenkel D (2011) Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett 11:5391–5395

    Article  PubMed  CAS  Google Scholar 

  162. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Article  PubMed  CAS  Google Scholar 

  163. dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA (2011) Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines. Small 7:3341–3349

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipe E. Antunes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Santos, S.d., Medronho, B., Santos, T.d., Antunes, F.E. (2013). Amphiphilic Molecules in Drug Delivery Systems. In: Coelho, J. (eds) Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment. Advances in Predictive, Preventive and Personalised Medicine, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6010-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6010-3_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6009-7

  • Online ISBN: 978-94-007-6010-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics