Skip to main content

Electrical TCAD Simulations and Modeling in Germanium

  • Chapter
High Mobility and Quantum Well Transistors

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 42))

Abstract

ChapterĀ 4 extends a TCAD device simulator to allow electrical simulations of scaled Ge MOSFETs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.Ā Bellenger, M.Ā Houssa, A.Ā Delabie, V.Ā Afanasiev, T.Ā Conard, M.Ā Caymax, M.Ā Meuris, K. DeĀ Meyer, M.M.Ā Heyns, Passivation of Ge(100)/GeO2/high-Īŗ gate stacks using thermal oxide treatments. J.Ā Electrochem. Soc. 155(2), G33ā€“G38 (2008)

    ArticleĀ  Google ScholarĀ 

  2. D.M.Ā Caughey, R.E.Ā Thomas, Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 55(12), 2192ā€“2193 (1967)

    ArticleĀ  Google ScholarĀ 

  3. R.Ā Chau, S.Ā Datta, M.Ā Doczy, B.Ā Doyle, B.Ā Jin, J.Ā Kavalieros, A.Ā Majumdar, M.Ā Metz, M.Ā Radosavljevic, Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Electron Device Lett. 4(2), 153ā€“158 (2005)

    Google ScholarĀ 

  4. C.-O.Ā Chui, H.Ā Kim, D.Ā Chi, B.B.Ā Triplett, P.C.Ā McIntyre, K.C.Ā Saraswat, A sub-400Ā degĀ°C germanium MOSFET technology with high-Īŗ dielectric and metal gate, in International Electron Devices Meeting (2002), pp.Ā 437ā€“440

    ChapterĀ  Google ScholarĀ 

  5. B. DeĀ Jaeger, R.Ā Bonzom, F.Ā Leys, J.Ā Steenbergen, G.Ā Winderickx, E. VanĀ Moorhem, G.Ā Raskin, F.Ā Letertre, T.Ā Billon, M.Ā Meuris, M.Ā Heyns, Optimisation of a thin epitaxial Si layer as a Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-insulator substrates. Microelectron. Eng. 80, 26ā€“29 (2005)

    ArticleĀ  Google ScholarĀ 

  6. G.Ā Du, X.Y.Ā Liu, Z.-L.Ā Xia, Y.K.Ā Wang, D.Q.Ā Hou, J.F.Ā Kang, R.Q.Ā Han, Evaluations of scaling properties for Ge on insulator MOSFETs in nano-scale. Jpn. J. Appl. Phys. 44(4B), 2195ā€“2197 (2005)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  7. G.Ā Eneman, M.Ā Wiot, A.Ā Brugere, O.S.I.Ā Casain, S.Ā Sonde, D.P.Ā Brunco, B. DeĀ Jaeger, A.Ā Satta, G.Ā Hellings, K. DeĀ Meyer, C.Ā Claeys, M.Ā Meuris, M.M.Ā Heyns, E.Ā Simoen, Impact of donor concentration, electric field, and temperature effects on the leakage current in germanium p+/n junctions. IEEE Trans. Electron Devices 55(9), 2287ā€“2296 (2008)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  8. G.Ā Eneman, B. DeĀ Jaeger, E.Ā Simoen, D.P.Ā Brunco, G.Ā Hellings, J.Ā Mitard, K. DeĀ Meyer, M.Ā Meuris, M.M.Ā Heyns, Quantification of drain extension leakage in a scaled bulk germanium pMOS technology. IEEE Trans. Electron Devices 56(12), 3115ā€“3122 (2009)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  9. V.I.Ā Fistul, M.I.Ā Iglitsyn, E.M.Ā Omelyanovskii, Mobility of electrons in germanium strongly doped with arsenic. Sov. Phys., Solid State 4(4), 784ā€“785 (1962)

    Google ScholarĀ 

  10. J.G.Ā Fossum, D.S.Ā Lee, A physical model for the dependence of carrier lifetime on doping density in nondegenerate silicon. Solid-State Electron. 25, 741ā€“747 (1982)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  11. E.Ā Gaubas, M.Ā Bauza, A.Ā Uleckas, J.Ā Vanhellemont, Carrier lifetime studies in Ge using microwave and infrared light techniques. Mater. Sci. Semicond. Process. 9(4ā€“5), 781ā€“787 (2006). Also in Proceedings of Symposium T E-MRS 2006 Spring Meeting on Germanium Based Semiconductors from Materials to Devices

    ArticleĀ  Google ScholarĀ 

  12. O.A.Ā Golikova, B.Ya.Ā Moizhes, L.S.Ā Stilā€™bans, Hole mobility of germanium as a function of concentration and temperature. Sov. Phys., Solid State 3(10), 2259ā€“2265 (1962)

    Google ScholarĀ 

  13. G.Ā Hellings, G.Ā Eneman, R.Ā Krom, B. DeĀ Jaeger, J.Ā Mitard, A. DeĀ Keersgieter, T.Ā Hoffmann, M.Ā Meuris, K. DeĀ Meyer, Electrical TCAD simulations of a germanium pMOSFET technology. IEEE Trans. Electron Devices 57(10), 2539ā€“2546 (2010)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  14. G.A.M.Ā Hurkx, D.B.M.Ā Klaassen, M.P.G.Ā Knuvers, A new recombination model for device simulation including tunneling. IEEE Trans. Electron Devices 39(2), 331ā€“338 (1992)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  15. R.D.Ā Larrabee, Drift velocity saturation in p-type germanium. J.Ā Appl. Phys. 30(6), 857ā€“859 (1959)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  16. C.Ā Lombardi, S.Ā Manzini, A.Ā Saporito, M.Ā Vanzi, A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 7(11), 1164ā€“1171 (1988)

    ArticleĀ  Google ScholarĀ 

  17. K.Ā Martens, J.Ā Mitard, B. DeĀ Jaeger, M.Ā Meuris, H.Ā Maes, G.Ā Groeseneken, F.Ā Minucci, F.Ā Crupi, Impact of Si-thickness on interface and device properties for Si-passivated Ge pMOSFETs, in Solid-State Device Research Conference (2008), pp.Ā 138ā€“141

    Google ScholarĀ 

  18. K.Ā Martens, C.Ā On Chui, G.Ā Brammertz, B. DeĀ Jaeger, D.Ā Kuzum, M.Ā Meuris, M.Ā Heyns, T.Ā Krishnamohan, K.Ā Saraswat, H.E.Ā Maes, G.Ā Groeseneken, On the correct extraction of interface trap density of mos devices with high-mobility semiconductor substrates. IEEE Trans. Electron Devices 55(2), 547ā€“556 (2008)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  19. G.Ā Masetti, M.Ā Severi, S.Ā Solmi, Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon. IEEE Trans. Electron Devices 30(7), 764ā€“769 (1983)

    ArticleĀ  Google ScholarĀ 

  20. J.Ā Mitard, K.Ā Martens, B. DeĀ Jaeger, J.Ā Franco, C.Ā Shea, C.Ā Plourde, F.Ā Leys, R.Ā Loo, G.Ā Hellings, G.Ā Eneman, W.Ā Wang, V.Ā Lin, B.Ā Kaczer, K. DeĀ Meyer, T.Ā Hoffmann, S. DeĀ Gendt, M.Ā Caymax, M.Ā Meuris, M.Ā Heyns, Impact of Epi-Si growth temperature on Ge-pFET performance, in 39th European Solid-State Device Research Conference (ESSDERC) (2009), pp.Ā 411ā€“414

    Google ScholarĀ 

  21. J.Ā Mitard, C.Ā Shea, B. DeĀ Jaeger, A.Ā Pristera, G.Ā Wang, M.Ā Houssa, G.Ā Eneman, G.Ā Hellings, W.E.Ā Wang, J.C.Ā Lin, F.E.Ā Leys, R.Ā Loo, G.Ā Winderickx, E.Ā Vrancken, A.Ā Stesmans, K. DeĀ Meyer, M.Ā Caymax, L.Ā Pantisano, M.Ā Meuris, M.Ā Heyns, Impact of EOT scaling down to 0.85nm on 70nm GE-pFETs technology with STI, in Symposium on VLSI Technology (2009), pp.Ā 82ā€“83

    Google ScholarĀ 

  22. E.J.Ā Ryder, Mobility of holes and electrons in high electric fields. Phys. Rev. 90(5), 766ā€“769 (1953)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  23. A.Ā Schenk, Rigorous theory and simplified model of the band-to-band tunneling in silicon. Solid-State Electron. 36(1), 19ā€“34 (1993)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  24. Sentaurus sdevice, ver. D-2010.03. Available from Synopsys inc. (2010)

    Google ScholarĀ 

  25. Sentaurus sprocess, ver. D-2010.03. Available from Synopsys inc. (2010)

    Google ScholarĀ 

  26. S.M.Ā Sze, Physics of Semiconductor Devices (Wiley, Hoboken, 1981)

    Google ScholarĀ 

  27. S.Ā Takagi, A.Ā Toriumi, M.Ā Iwase, H.Ā Tango, On the universality of inversion layer mobility in Si MOSFETā€™s: Part I. Effects of substrate impurity concentration. IEEE Trans. Electron Devices 41(12), 2357ā€“2362 (1994)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  28. N.Ā Taoka, K.Ā Ikeda, Y.Ā Yamashita, N.Ā Sugiyama, S.Ā Takagi, Effects of ambient conditions in thermal treatment for Ge(0 0 1) surfaces on Geā€“MIS interface properties. Semicond. Sci. Technol. 22(1), S114 (2007)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  29. N.Ā Taoka, M.Ā Harada, Y.Ā Yamashita, T.Ā Yamamoto, N.Ā Sugiyama, S.-I.Ā Takagi, Effects of Si passivation on Ge metal-insulator-semiconductor interface properties and inversion-layer hole mobility. Appl. Phys. Lett. 92(11), 113511 (2008)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  30. L.Ā Trojman, L.Ā Pantisano, M.Ā Dehan, I.Ā Ferain, S.Ā Severi, H.E.Ā Maes, G.Ā Groeseneken, Velocity and mobility investigation in 1-nm-EOT HfSiON on Si (110) and (100)ā€”Does the dielectric quality matter? IEEE Trans. Electron Devices 56(12), 3009ā€“3017 (2009)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  31. Y.Ā Tsividis, Operation and Modeling of the MOS Transistor (Oxford University Press, Oxford, 1999)

    Google ScholarĀ 

  32. M.S.Ā Tyagi, R. VanĀ Overstraeten, Minority carrier recombination in heavily-doped silicon. Solid-State Electron. 26, 577ā€“597 (1983)

    ArticleĀ  ADSĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

4.1.1 A.1 TCAD Model Parameters

This appendix contains the model parameters used in this work. Each time, both the name of physical phenomenon and the name of the parameter set is given (e.g. SRH-recombination is modeled using the Scharfetter dataset in Sentaurus Device) together with the default silicon values. If different values apply for electrons and holes, both values are given in this order, separated by a comma. Note that the definition of these parameters below applies solely to their specific implementation in Sentaurus Device. The literature references on which these models are based may use slightly different definitions. For this reason, the parameters below are not included in the general list of symbols of this book.

4.1.2 A.2 Recombination

SRH-recombination (Scharfetter)

Parameter

Units

Si (e, h)

Ge (e, h)

Ļ„ min

s

0, 0

0, 0

Ļ„ max

s

1Ɨ10āˆ’5, 3Ɨ10āˆ’6

4Ɨ10āˆ’5, 4Ɨ10āˆ’5

N ref

cmāˆ’3

1016, 1016

1014, 1014

Ī³

ā€“

1, 1

0.85, 0.85

T Ī±

ā€“

āˆ’1.5, āˆ’1.5

āˆ’1.5, āˆ’1.5

T coeff

ā€“

2.55, 2.55

2.55, 2.55

E trap

eV

0.0, 0.0

0.0, 0.0

Note (1)ā€”E trap refers to the SRH reference trap energy w.r.t mid-bandgap (e.g. E trap =0.0 corresponds to E V +0.33Ā eV in Germanium)

Note (2)ā€”Ļ„ max was taken from [47] and then decreased slightly to correspond with the leakage measurements on our Ge p+/n diodes

Note (3)ā€”The temperature dependence for Ge was not investigated. Instead, Si defaults are still used. Further research is required for this dependency

TAT (HurckxTrapAssistedTunneling)

Parameter

Units

Si (e, h)

Ge (e, h)

m t

ā€“

0.5, 0.5

0.12, 0.34

BTBT (Band2BandTunneling)

Parameter

Units

Si

Ge

A

cmā€‰sāˆ’1ā€‰Vāˆ’2

8.977Ɨ1020

8.977Ɨ1020

B

eVāˆ’3/2ā€‰Vā€‰cmāˆ’1

2.147Ɨ107

1.6Ɨ107

4.1.3 A.3 Mobility

Phonon Scattering (ConstantMobility)

Parameter

Units

Si (e, h)

Ge (e, h)

Ī¼ max

cm2ā€‰Vāˆ’1ā€‰sāˆ’1

1417, 470.5

3900, 1900

exponent

ā€“

2.5, 2.2

2.5, 2.2

Impurity Scattering (DopingDependence)

Parameter

Units

Si (e, h)

Ge (e, h)

Ī¼ min1

cm2/Vs

52.2, 44.9

60, 60

Ī¼ min2

cm2/Vs

52.2, 0.0

0, 0

Ī¼ 1

cm2/Vs

43.4, 29

20, 40

P c

cmāˆ’3

0, 9.23Ɨ1016

1017, 9.23Ɨ1016

C r

cmāˆ’3

9.68Ɨ1016, 2.23Ɨ1017

8Ɨ1016, 2Ɨ1017

C s

cmāˆ’3

3.34Ɨ1020, 6.10Ɨ1020

3.43Ɨ1020, 1020

Ī±

ā€“

0.68, 0.719

0.55, 0.55

Ī²

ā€“

2.0, 2.0

2.0, 2.0

High Lateral Field Mobility (HighFieldDependence)

Parameter

Units

Si (e, h)

Ge (e, h)

v sat0

cm/s

1.07Ɨ107, 8.37Ɨ106

8Ɨ106, 6Ɨ106

High Transversal Field Mobility (EnormalDependence (holes only))

Parameter

Units

Si

Ge

B

cm/s

9.925Ɨ106

1.993Ɨ105

C

cm5/3ā€‰Vāˆ’2/3ā€‰sāˆ’1

2.947Ɨ103

4.875Ɨ103

N 0

cmāˆ’3

1

1

Ī»

ā€“

0.0317

0.0317

k

ā€“

1

1

Ī“

cm2/Vs

2.0546Ɨ1014

1.705Ɨ1011

A

ā€“

2

1.5

Ī± āŠ„

cm3

0

0

N 1

cmāˆ’3

1

1

Ī½

ā€“

1

1

Ī·

V2ā€‰cmāˆ’1ā€‰sāˆ’1

2.0546Ɨ1030

2.0546Ɨ1030

l crit

cm

10āˆ’6

10āˆ’6

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hellings, G., De Meyer, K. (2013). Electrical TCAD Simulations and Modeling in Germanium. In: High Mobility and Quantum Well Transistors. Springer Series in Advanced Microelectronics, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6340-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6340-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6339-5

  • Online ISBN: 978-94-007-6340-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics