Skip to main content

Salicylic Acid-Mediated Stress-Induced Flowering

  • Chapter
  • First Online:
SALICYLIC ACID

Abstract

Plants have a tendency to flower under unsuitable growth conditions. Stress factors, such as poor nutrition, high or low temperature, high- or low-intensity light, and ultraviolet light, have been implicated in this stress-induced flowering. The stressed plants do not wait for the arrival of a season when photoperiodic conditions are suitable for flowering, and such precocious flowering might assist in species preservation. Stress-induced flowering has been well studied in Pharbitis nil (synonym Ipomoea nil), Perilla frutescens var. crispa, Lemna paucicostata (synonym Lemna aequinoctialis) and Arabidopsis thaliana. The phenylalanine ammonia-lyase (PAL) inhibitor suppresses stress-induced flowering in P. nil, and this effect was reversed with salicylic acid (SA). The PAL gene expression, PAL enzyme activity and SA content in the cotyledons increased during stress-induced flowering. These results suggest that SA mediates stress-induced flowering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, S., Allen, T., & Whitelam, G. C. (2009). Interaction between the light quality and flowering time pathways in Arabidopsis. The Plant Journal, 60, 257–267.

    Article  PubMed  CAS  Google Scholar 

  • Amagasa, T., Ogawa, M., & Sugai, S. (1992). Effects of aminooxyacetic acid and its derivatives on flowering in Pharbitis nil. Plant and Cell Physiology, 33, 1025–1029.

    CAS  Google Scholar 

  • Appert, C., Zoń, J., & Amrhein, N. (2003). Kinetic analysis of the inhibition of phenylalanine ammonia-lyase by 2-aminoindan-2-phosphonic acid and other phenylalanine analogues. Phytochemistry, 62, 415–422.

    Article  PubMed  CAS  Google Scholar 

  • Bernier, G., & Périlleux, C. (2005). A physiological overview of the genetics of flowering time control. Plant Biotechnology Journal, 3, 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Blanvillain, R., Wei, S., Wei, P., Kim, J. H., & Ow, D. W. (2011). Stress tolerance to stress escape in plants: Role of the OXS2 zinc-finger transcription factor family. EMBO Journal, 30, 3812–3822.

    Article  PubMed  CAS  Google Scholar 

  • Borsani, O., Valpuesta, V., & Botella, M. A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology, 126, 1024–1030.

    Article  PubMed  CAS  Google Scholar 

  • Burn, J. E., Bagnall, D. J., Metzger, J. D., Dennis, E. S., & Peacock, W. J. (1993). DNA methylation, vernalization, and the initiation of flowering. Proceedings of the National Academy of Sciences of the United States of America, 90, 287–291.

    Article  PubMed  CAS  Google Scholar 

  • Chalker-Scott, L. (1999). Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology, 70, 1–9.

    Article  CAS  Google Scholar 

  • Chen, Z., Zheng, Z., Huang, J., Lai, Z., & Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant Signaling and Behavior, 4, 493–496.

    Article  PubMed  CAS  Google Scholar 

  • Christie, P. J., Alfenito, M. R., & Walbot, V. (1994). Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta, 194, 541–549.

    Article  CAS  Google Scholar 

  • Cleland, C. F. (1970). The use of aphids in the search for the hormonal factors controlling flowering. In D. J. Carr (Ed.), Plant Growth Substances 1970 (pp. 753–757). Berlin: Springer.

    Google Scholar 

  • Cleland, C. F. (1974). The influence of salicylic acid on flowering and growth in the long-day plant Lemna gibba G3. In R. L. Bieleski, A. R. Ferguson, & M. M. Cresswell (Eds.), Mechanisms of regulation of plant growth (pp. 553–557). Wellington: Royal Society of New Zealand.

    Google Scholar 

  • Cleland, C. F. (1978). The flowering enigma. Bioscience, 28, 265–269.

    Article  Google Scholar 

  • Cleland, C. F., & Ajami, A. (1974). Identification of the flower-inducing factor isolated from aphid honeydew as being salicylic acid. Plant Physiology, 54, 904–906.

    Article  PubMed  CAS  Google Scholar 

  • Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., et al. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 316, 1030–1033.

    Article  PubMed  CAS  Google Scholar 

  • Dezar, C. A., Giacomelli, J. I., Manavella, P. A., Ré, D. A., Alves-Ferreira, M., Baldwin, I. T., et al. (2011). HAHB10, a sunflower HD-Zip II transcription factor, participates in the induction of flowering and in the control of phytohormone-mediated responses to biotic stress. Journal of Experimental Botany, 62, 1061–1076.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, R. A., & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. The Plant Cell, 7, 1085–1097.

    PubMed  CAS  Google Scholar 

  • Fujioka, S., Yamaguchi, I., Murofushi, N., Takahashi, N., Kaihara, S., & Takimoto, A. (1983). Flowering and endogenous levels of benzoic acid in Lemna species. Plant and Cell Physiology, 24, 235–239.

    Article  CAS  Google Scholar 

  • Gidrol, X., Sabelli, P. A., Fern, Y. S., & Kush, A. K. (1996). Annexin-like protein from Arabidopsis thaliana rescues ΔoxyR mutant of Escherichia coli from H2O2 stress. Proceedings of the National Academy of Sciences of the United States of America, 93, 11268–11273.

    Article  PubMed  CAS  Google Scholar 

  • Hatayama, T., & Takeno, K. (2003). The metabolic pathway of salicylic acid rather than of chlorogenic acid is involved in the stress-induced flowering of Pharbitis nil. Journal of Plant Physiology, 160, 461–467.

    Article  PubMed  CAS  Google Scholar 

  • Hayama, R., Agashe, B., Luley, E., King, R., & Coupland, G. (2007). A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. The Plant Cell, 19, 2988–3000.

    Article  PubMed  CAS  Google Scholar 

  • Hey, S. J., Byrne, E., & Halford, N. G. (2010). The interface between metabolic and stress signaling. Annals of Botany, 105, 197–203.

    Article  PubMed  CAS  Google Scholar 

  • Hirai, N., Kojima, Y., Koshimizu, K., Shinozaki, M., & Takimoto, A. (1993). Accumulation of phenylpropanoids in cotyledons of morning glory (Pharbitis nil) seedlings during the induction of flowering by poor nutrition. Plant and Cell Physiology, 34, 1039–1044.

    CAS  Google Scholar 

  • Hirai, N., Kuwano, Y., Kojima, Y., Koshimizu, K., Shinozaki, M., & Takimoto, A. (1995). Increase in the activity of phenylalanine ammonia-lyase during the non-photoperiodic induction of flowering in seedlings of morning glory (Pharbitis nil). Plant and Cell Physiology, 36, 291–297.

    CAS  Google Scholar 

  • Hirai, N., Yamamuro, M., Koshimizu, K., Shinozaki, M., & Takimoto, A. (1994). Accumulation of phenylpropanoids in the cotyledons of morning glory (Pharbitis nil) seedlings during the induction of flowering by low temperature treatment, and the effect of precedent exposure to high-intensity light. Plant and Cell Physiology, 35, 691–695.

    CAS  Google Scholar 

  • Imamura, S. (1967). Photoperiodic induction and the floral stimulus. In S. Imamura (Ed.), Physiology of flowering in Pharbitis nil (pp. 15–28). Tokyo: Japanese Society of Plant Physiologists.

    Google Scholar 

  • Ishii, T., Soeno, K., Asami, T., Fujioka, S., & Shimada, Y. (2010). Arabidopsis seedlings over-accumulated indole-3-acetic acid in response to aminooxyacetic acid. Bioscience Biotechnology Biochemistry, 74, 2345–2347.

    Article  CAS  Google Scholar 

  • Ishimaru, A., Takeno, K., & Shinozaki, M. (1996). Correlation of flowering induced by low temperature and endogenous levels of phenylpropanoids in Pharbitis nil: A study with a secondary-metabolism mutant. Journal of Plant Physiology, 148, 672–676.

    Article  CAS  Google Scholar 

  • Ishioka, N., Tanimoto, S., & Harada, H. (1990). Flower-inducing activity of phloem exudate in cultured apices from Pharbitis seedlings. Plant and Cell Physiology, 31, 705–709.

    CAS  Google Scholar 

  • Iwase, Y., Shiraya, T., & Takeno, K. (2010). Flowering and dwarfism induced by DNA demethylation in Pharbitis nil. Physiologia Plantarum, 139, 118–127.

    Article  PubMed  CAS  Google Scholar 

  • Jaspers, P., & Kangasjärvi, J. (2010). Reactive oxygen species in abiotic stress signaling. Physiologia Plantarum, 138, 405–413.

    Article  PubMed  CAS  Google Scholar 

  • Jin, J. B., Jin, Y. H., Lee, J., Miura, K., Yoo, C. Y., Kim, W. Y., et al. (2008). The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. The Plant Journal, 53, 530–540.

    Article  PubMed  CAS  Google Scholar 

  • Kandeler, R. (1985). Lemnaceae. In A. H. Halevy (Ed.), CRC Handbook of flowering (Vol. 3 pp. 251–279). Florida: CRC Press, Inc, Boca Raton.

    Google Scholar 

  • Kessmann, H., Edwards, R., Geno, P. W., & Dixon, R. A. (1990). Stress responses in alfalfa (Medicago sativa L.): V. Constitutive and elicitor-induced accumulation of isoflavonoid conjugates in cell suspension cultures. Plant Physiology, 94, 227–232.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, H., Miura, T., Wada, K. C., & Takeno, K. (2007). Induction of flowering by 5-azacytidine in some plant species: Relationship between the stability of photoperiodically induced flowering and flower-inducing effect of DNA demethylation. Physiologia Plantarum, 131, 462–469.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, H., Ozaki, H., Itoh, K., Kato, A., & Takeno, K. (2006). Flowering induced by 5-azacytidine, a DNA demethylating reagent in a short-day plant, Perilla frutescens var. crispa. Physiologia Plantarum, 127, 130–137.

    Article  CAS  Google Scholar 

  • Kondo, H., Shiraya, T., Wada, K. C., & Takeno, K. (2010). Induction of flowering by DNA demethylation in Perilla frutescens and Silene armeria: Heritability of 5-azacytidine-induced effects and alteration of the DNA methylation state by photoperiodic conditions. Plant Science, 178, 321–326.

    Article  CAS  Google Scholar 

  • Krajnčič, B. (1985). Regulation of floral induction with ABA and EDDHA. Biološki Vestnik 33, 39–52.

    Google Scholar 

  • Krajnčič, B., Kristl, J., & Janžekovič, I. (2006). Possible role of jasmonic acid in the regulation of floral induction, evocation and floral differentiation in Lemna minor L. Plant Physiology and Biochemistry, 44, 752–758.

    Article  PubMed  Google Scholar 

  • Krajnčič, B., & Nemec, J. (1995). The effect of jasmonic acid on flowering in Spirodela polyrrhiza (L.) Schleiden. Journal of Plant Physiology, 146, 754–756.

    Article  Google Scholar 

  • Larkindale, J., Hall, J. D., Knight, M. R., & Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology, 138, 882–897.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S., Kim, S. G., & Park, C. M. (2010). Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist, 188, 626–637.

    Article  PubMed  CAS  Google Scholar 

  • León, J., Lawton, M. A., & Raskin, I. (1995). Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiology, 108, 1673–1678.

    PubMed  Google Scholar 

  • Lin, M. K., Belanger, H., Lee, Y. J., Varkonyi-Gasic, E., Taoka, K., Miura, E., et al. (2007). FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. The Plant Cell, 19, 1488–1506.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., & Zhang, S. (2004). Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. The Plant Cell, 16, 3386–3399.

    Article  PubMed  CAS  Google Scholar 

  • Marín, I. C., Loef, I., Bartetzko, L., Searle, I., Coupland, G., Stitt, M., et al. (2011). Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta, 233, 539–552.

    Article  Google Scholar 

  • Martínez, C., Pons, E., Prats, G., & León, J. (2004). Salicylic acid regulates flowering time and links defense responses and reproductive development. The Plant Journal, 37, 209–217.

    Article  PubMed  Google Scholar 

  • Mateo, A., Funck, D., Mühlenbock, P., Kular, B., Mullineaux, P. M., & Karpinski, S. (2006). Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. Journal of Experimental Botany, 57, 1795–1807.

    Article  PubMed  CAS  Google Scholar 

  • Mauch-Mani, B., & Slusarenko, A. J. (1996). Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. The Plant Cell, 8, 203–212.

    PubMed  CAS  Google Scholar 

  • Mavandad, M., Edwards, R., Liang, X., Lamb, C. J., & Dixon, R. A. (1990). Effects of trans-cinnamic acid on expression of the bean phenylalanine ammonia-lyase gene family. Plant Physiology, 94, 671–680.

    Article  PubMed  CAS  Google Scholar 

  • McDaniel, C. N. (1996). Developmental physiology of floral initiation in Nicotiana tabacum L. Journal of Experimental Botany, 47, 465–475.

    Article  CAS  Google Scholar 

  • Michaels, S. D., & Amasino, R. M. (2000). Memories of winter: Vernalization and the competence to flower. Plant, Cell and Environment, 23, 1145–1153.

    Article  Google Scholar 

  • Michaels, S. D., & Amasino, R. M. (2001). Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. The Plant Cell, 13, 935–941.

    PubMed  CAS  Google Scholar 

  • Moreau, M., Lindermar, C., Durner, J., & Klessig, D. F. (2010). NO synthesis and signaling in plants—where do we stand? Physiologia Plantarum, 138, 372–383.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi, F., Kusumi, T., Inoue, Y., & Fujii, T. (1995). Dihydrokaempferol glucoside from cotyledons promotes flowering in Pharbitis nil. Plant and Cell Physiology, 36, 1303–1309.

    CAS  Google Scholar 

  • Neuenschwander, U., Vernooij, B., Friedrich, L., Uknes, S., Kessmann, H., & Ryals, J. (1995). Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance? The Plant Journal, 8, 227–233.

    Article  CAS  Google Scholar 

  • Ni, W., Fahrendorf, T., Balance, G. M., Lamb, C. J., & Dixon, R. A. (1996). Stress responses in alfalfa (Medicago sativa L.). XX. Transcriptional activation of phenylpropanoid pathway genes in elicitor-induced cell suspension cultures. Plant Molecular Biology, 30, 427–438.

    Article  PubMed  CAS  Google Scholar 

  • Okuda, T., Matsuda, Y., Yamanaka, A., & Sagisaka, S. (1991). Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiology, 97, 1265–1267.

    Article  PubMed  CAS  Google Scholar 

  • Orr, J. D., Edwards, R., & Dixon, R. A. (1993). Stress responses in alfalfa (Medicago sativa L.) XIV. Changes in the levels of phenylpropanoid pathway intermediates in relation to regulation of l-phenylalanine ammonia-lyase in elicitor-treated cell-suspension cultures. Plant Physiology, 101, 847–856.

    PubMed  CAS  Google Scholar 

  • Purse, J. G. (1984). Phloem exudate of Perilla crispa and its effects of flowering of P. crispa shoot explants. Journal of Experimental Botany, 35, 227–238.

    Article  CAS  Google Scholar 

  • Rasmussen, J. B., Hammerschmidt, R., & Zook, M. N. (1991). Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv syringae. Plant Physiology, 97, 1342–1347.

    Article  PubMed  CAS  Google Scholar 

  • Reymond, P., & Farmer, E. E. (1998). Jasmonate and salicylate as global signals for defense gene expression. Current Opinion in Plant Biology, 1, 404–411.

    Article  PubMed  CAS  Google Scholar 

  • Rivas-San Vicente, M., & Plasencia, J. (2011). Salicylic acid beyond defence: Its role in plant growth and development. Journal of Experimental Botany, 62, 3321–3338.

    Article  PubMed  CAS  Google Scholar 

  • Scott, I. M., Clarke, S. M., Wood, J. E., & Mur, L. A. J. (2004). Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiology, 135, 1040–1049.

    Google Scholar 

  • Segarra, S., Mir, R., Martínez, C., & León, J. (2010). Genome-wide analyses of the transcriptomes of salicylic acid-deficient versus wild-type plants uncover Pathogen and Circadian Controlled 1 (PCC1) as a regulator of flowering time in Arabidopsis. Plant Cell and Environment, 33, 11–22.

    CAS  Google Scholar 

  • Seo, P. J., Ryu, J., Kang, S. K., & Park, C. M. (2011). Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis. The Plant Journal, 65, 418–429.

    Article  PubMed  CAS  Google Scholar 

  • Shimakawa, A., Shiraya, T., Ishizuka, Y., Wada, K. C., Mitsui, T., & Takeno, K. (2012). Salicylic acid is involved in the regulation of starvation stress-induced flowering in Lemna paucicostata. Journal of Plant Physiology, 169, 987–991.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki, M. (1985). Organ correlation in long-day flowering of Pharbitis nil. Biologia Plantarum, 27, 382–385.

    Article  CAS  Google Scholar 

  • Shinozaki, M., Asada, K., & Takimoto, A. (1988a). Correlation between chlorogenic acid content in cotyledons and flowering in Pharbitis seedlings under poor nutrition. Plant and Cell Physiology, 29, 605–609.

    CAS  Google Scholar 

  • Shinozaki, M., Hikichi, M., Yoshida, K., Watanabe, K., & Takimoto, A. (1982). Effect of high-intensity light given prior to low-temperature treatment on the long-day flowering of Pharbitis nil. Plant and Cell Physiology, 23, 473–477.

    CAS  Google Scholar 

  • Shinozaki, M., Hirai, N., Kojima, Y., Koshimizu, K., & Takimoto, A. (1994). Correlation between level of phenylpropanoids in cotyledons and flowering in Pharbitis seedlings under high-fluence illumination. Plant and Cell Physiology, 35, 807–810.

    CAS  Google Scholar 

  • Shinozaki, M., Swe, K. L., & Takimoto, A. (1988b). Varietal difference in the ability to flower in response to poor nutrition and its correlation with chlorogenic acid accumulation in Pharbitis nil. Plant and Cell Physiology, 29, 611–614.

    CAS  Google Scholar 

  • Shinozaki, M., & Takimoto, A. (1982). The role of cotyledons in flower initiation of Pharbitis nil at low temperatures. Plant and Cell Physiology, 23, 403–408.

    Google Scholar 

  • Shinozaki, M., Watanabe, K., & Takimoto, A. (1985). Flower-promoting activity of benzoic acid and related compounds for Pharbitis nil Chois. Memoirs of the College of Agriculture Kyoto University, 126, 21–26.

    Google Scholar 

  • Simpson, G. G. (2004). The autonomous pathway: Epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Current Opinion in Plant Biology, 7, 570–574.

    Article  PubMed  CAS  Google Scholar 

  • Soeno, K., Goda, H., Ishii, T., Ogura, T., Tachikawa, T., Sasaki, E., et al. (2010). Auxin biosynthesis inhibitors, identified by a genomics-based approach, provide insights into auxin biosynthesis. Plant and Cell Physiology, 51, 524–536.

    Article  PubMed  CAS  Google Scholar 

  • Steward, N., Ito, M., Yamaguchi, Y., Koizumi, N., & Sano, H. (2002). Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. Journal of Biological Chemistry, 277, 37741–37746.

    Article  PubMed  CAS  Google Scholar 

  • Suge, H. (1972). Inhibition of photoperiodic floral induction in Pharbitis nil by ethylene. Plant and Cell Physiology, 13, 1031–1038.

    CAS  Google Scholar 

  • Summermatter, K., Sticher, L., & Métraux, J. P. (1995). Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv syringae. Plant Physiology, 108, 1379–1385.

    PubMed  CAS  Google Scholar 

  • Swe, K. L., Shinozaki, M., & Takimoto, A. (1985). Varietal differences in flowering behavior of Pharbitis nil Chois. Memoirs of the College of Agriculture Kyoto University, 126, 1–20.

    Google Scholar 

  • Takeno, K. (1996). Influences of plant hormones on photoperiodic flowering in Pharbitis nil: Re-evaluation by the perfusion technique. Plant Growth Regulation, 20, 189–194.

    Article  CAS  Google Scholar 

  • Takeno, K. (2012). Stress-induced flowering. In P. Ahmad & M. N. V. Prasad (Eds.), Abiotic stress responses in plants: Metabolism, productivity and sustainability (pp. 331–345). New York: Springer.

    Google Scholar 

  • Takeno, K., & Maeda, T. (1996). Abscisic acid both promotes and inhibits photoperiodic flowering of Pharbitis nil. Physiologia Plantarum, 98, 467–470.

    Article  CAS  Google Scholar 

  • Tamaki, S., Matsuo, S., Wong, H. L., Yokoi, S., & Shimamoto, K. (2007). Hd3a protein is a mobile flowering signal in rice. Science, 316, 1033–1036.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, B., & Vince-Prue, D. (1997). Photoperiodism in Plants (2nd ed.). San Diego: Academic Press.

    Google Scholar 

  • Wada, K. C. (2007). Stress-induced flowering. Dissertation of Master Degree. Niigata University (in Japanese).

    Google Scholar 

  • Wada, K. C. (2012). Regulatory mechanism of stress-induced flowering. Dissertation of PhD Degree. Niigata University.

    Google Scholar 

  • Wada, K. C., Kondo, H., & Takeno, K. (2010a). Obligatory short-day plant, Perilla frutescens var. crispa can flower in response to low-intensity light stress under long-day conditions. Physiologia Plantarum, 138, 339–345.

    Article  PubMed  CAS  Google Scholar 

  • Wada, K. C., & Takeno, K. (2010). Stress-induced flowering. Plant Signaling and Behavior, 5, 944–947.

    Google Scholar 

  • Wada, K. C., Yamada, M., Shiraya, T., & Takeno, K. (2010b). Salicylic acid and the flowering gene FLOWERING LOCUS T homolog are involved in poor-nutrition stress-induced flowering of Pharbitis nil. Journal of Plant Physiology, 167, 447–452.

    Article  PubMed  CAS  Google Scholar 

  • Wada, N., Shinozaki, M., & Iwamura, H. (1994). Flower induction by polyamines and related compounds in seedlings of morning glory (Pharbitis nil cv. Kidachi). Plant and Cell Physiology, 35, 469–472.

    Google Scholar 

  • Wen, P. F., Chen, J. Y., Kong, W. F., Pan, Q. H., Wan, S. B., & Huang, W. D. (2005). Salicylic acid induced the expression of phenylalanine ammonia-lyase gene in grape berry. Plant Science, 169, 928–934.

    Article  CAS  Google Scholar 

  • Xiong, L., Schumaker, K. S., & Zhu, J. K. (2002). Cell signaling during cold, drought, and salt stress. The Plant Cell, 14 (suppl.), S165–183.

    Google Scholar 

  • Yaish, M. W., Colasanti, J., & Rothstein, S. J. (2011). The role of epigenetic processes in controlling flowering time in plants exposed to stress. Journal of Experimental Botany, 62, 3727–3735.

    Article  PubMed  CAS  Google Scholar 

  • Yalpani, N., Leoń, J., Lawton, M. A., & Raskin, I. (1993). Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiology, 103, 315–321.

    PubMed  CAS  Google Scholar 

  • Yamada, M. (2011). The gene regulation of stress-induced flowering in Pharbitis nil. Dissertation of Master Degree. Niigata University (in Japanese).

    Google Scholar 

  • Yamaguchi, S., Yokoyama, M., Iida, T., Okai, M., Tanaka, O., & Takimoto, A. (2001). Identification of a component that induces flowering of Lemna among the reaction products of α–ketol linolenic acid (FIF) and norepinephrine. Plant and Cell Physiology, 42, 1201–1209.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, M., Yamaguchi, S., Inomata, S., Komatsu, K., Yoshida, S., Iida, T., et al. (2000). Stress-induced factor involved in flower formation of Lemna is an α–ketol derivative of linolenic acid. Plant and Cell Physiology, 41, 110–113.

    Article  PubMed  CAS  Google Scholar 

  • Yu, D., Liu, Y., Fan, B., Klessig, D. F., & Chen, Z. (1997). Is the high basal level of salicylic acid important for disease resistance in potato? Plant Physiology, 115, 343–349.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Takeno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wada, K.C., Takeno, K. (2013). Salicylic Acid-Mediated Stress-Induced Flowering. In: Hayat, S., Ahmad, A., Alyemeni, M. (eds) SALICYLIC ACID. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6428-6_9

Download citation

Publish with us

Policies and ethics