Skip to main content

Angiogenesis Modulation by Arachidonic Acid-derived Lipids: Positive and Negative Regulators of Angiogenesis

  • Chapter
  • First Online:
Angiogenesis Modulations in Health and Disease

Abstract

Arachidonic acid-derived lipids such as 15 deoxy-PGJ2 or 15 epi-lipoxin A4 have been shown to be potent anti-angiogenesis agents regardless of the angiogenesis stimulus. Other arachidonic acid-derived mediators differentially stimulate angiogenesis and the balance among the different arachidonic acid metabolites along their interactions might play an important role in angiogenesis hemostasis in various angiogenesis-associated disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith SC Jr, Allen J, Blair SN, Bonow RO, Brass LM, Fonarow GC, Grundy SM, Hiratzka L, Jones D, Krumholz HM, Mosca L, Pasternak RC, Pearson T, Pfeffer MA, Taubert KA (2006) AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: endorsed by the National Heart, Lung, and Blood Institute. Circulation 113(19):2363–2372

    Article  PubMed  Google Scholar 

  2. Yusuf S, Reddy S, Ounpuu S, Anand S (2001) Global burden of cardiovascular diseases: Part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 104(22):2746–2753

    Article  PubMed  CAS  Google Scholar 

  3. Grundy SM, Cleeman JI, Merz CN, Brewer HB Jr, Clark LT, Hunninghake DB, Pasternak RC, Smith SC Jr, Stone NJ (2004) Implications of recent clinical trials for the national cholesterol education program adult treatment panel III guidelines. Circulation 110(2):227–239

    Article  PubMed  Google Scholar 

  4. Zheng ZJ, Croft JB, Giles WH, Mensah GA (2001) Sudden cardiac death in the United States, 1989–1998. Circulation 104(18):2158–2163

    Article  PubMed  CAS  Google Scholar 

  5. Albert CM, Chae CU, Grodstein F, Rose LM, Rexrode KM, Ruskin JN, Stampfer MJ, Manson JE (2003) Prospective study of sudden cardiac death among women in the United States. Circulation 107(16):2096–2101

    Article  PubMed  Google Scholar 

  6. Anderson RN (2001) Deaths: leading causes for 1999. Natl Vital Stat Rep 49(11):1–87

    Google Scholar 

  7. Fuster V, Moreno PR, Fayad ZA, Corti R, Badimon JJ (2005) Atherothrombosis and high-risk plaque: Part I: evolving concepts. J Am Coll Cardiol 46(6):937–954

    Article  PubMed  Google Scholar 

  8. Jemal A, Ward E, Hao Y, Thun M (2005) Trends in the leading causes of death in the United States, 1970–2002. JAMA 294(10):1255–1259

    Article  PubMed  CAS  Google Scholar 

  9. Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, Thun MJ (2004) Cancer statistics. CA Cancer J Clin 54(1):8–29

    Article  PubMed  Google Scholar 

  10. Gralow J, Ozols RF, Bajorin DF, Cheson BD, Sandler HM, Winer EP, Bonner J, Demetri GD, Curran W Jr, Ganz PA, Kramer BS, Kris MG, Markman M, Mayer RJ, Raghavan D, Ramsey S, Reaman GH, Sawaya R, Schuchter LM, Sweetenham JW, Vahdat LT, Davidson NE, Schilsky RL, Lichter AS (2008) Clinical cancer advances 2007: major research advances in cancer treatment, prevention, and screening–a report from the American Society of Clinical Oncology. J Clin Oncol 26(2):313–325

    Article  PubMed  Google Scholar 

  11. Ishii I, Fukushima N, Ye X, Chun J (2004) Lysophospholipid receptors: signaling and biology. Annu Rev Biochem 73:321–354

    Article  PubMed  CAS  Google Scholar 

  12. Khurana R, Simons M, Martin JF, Zachary IC (2005) Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation 112(12):1813–1824

    Article  PubMed  Google Scholar 

  13. O’Brien ER, Garvin MR, Dev R, Stewart DK, Hinohara T, Simpson JB, Schwartz SM (1994) Angiogenesis in human coronary atherosclerotic plaques. Am J Pathol 145(4):883–894

    PubMed  Google Scholar 

  14. Sueishi K, Yonemitsu Y, Nakagawa K, Kaneda Y, Kumamoto M, Nakashima Y (1997) Atherosclerosis and angiogenesis. Its pathophysiological significance in humans as well as in an animal model induced by the gene transfer of vascular endothelial growth factor. Ann N Y Acad Sci 811(311–322):322–314

    Google Scholar 

  15. Simons M, Ware JA (2003) Therapeutic angiogenesis in cardiovascular disease. Nat Rev Drug Discov 2(11):863–871

    Article  PubMed  CAS  Google Scholar 

  16. Celletti FL, Waugh JM, Amabile PG, Brendolan A, Hilfiker PR, Dake MD (2001) Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med 7(4):425–429

    Article  PubMed  CAS  Google Scholar 

  17. Moulton KS, Heller E, Konerding MA, Flynn E, Palinski W, Folkman J (1999) Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation 99(13):1726–1732

    Article  PubMed  CAS  Google Scholar 

  18. Cuthbertson WF (1976) Essential fatty acid requirements in infancy. Am J Clin Nutr 29(5):559–568

    PubMed  CAS  Google Scholar 

  19. Tapiero H, Ba GN, Couvreur P, Tew KD (2002) Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed Pharmacother 56(5):215–222

    Article  PubMed  CAS  Google Scholar 

  20. Iniguez MA, Cacheiro-Llaguno C, Cuesta N, Diaz-Munoz MD, Fresno M (2008) Prostanoid function and cardiovascular disease. Arch Physiol Biochem 114(3):201–209

    Article  PubMed  CAS  Google Scholar 

  21. Calder PC (2006) N-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83(6 Suppl):1505S–1519S

    PubMed  CAS  Google Scholar 

  22. Gauthier KM, Yang W, Gross GJ, Campbell WB (2007 Dec) Roles of epoxyeicosatrienoic acids in vascular regulation and cardiac preconditioning. J Cardiovasc Pharmacol 50(6):601–608

    Article  PubMed  CAS  Google Scholar 

  23. Wray J, Bishop-Bailey D (2008) Epoxygenases and peroxisome proliferator-activated receptors in mammalian vascular biology. Exp Physiol 93(1):148–154

    Article  PubMed  CAS  Google Scholar 

  24. Levick SP, Loch DC, Taylor SM, Janicki JS (2007) Arachidonic acid metabolism as a potential mediator of cardiac fibrosis associated with inflammation. J Immunol 178(2):641–646

    PubMed  CAS  Google Scholar 

  25. Aoki J (2004) Mechanisms of lysophosphatidic acid production. Semin Cell Dev Biol 15(5):477–489

    Article  PubMed  CAS  Google Scholar 

  26. Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8(5):349–361

    Article  PubMed  CAS  Google Scholar 

  27. Hjelte LE, Nilsson A (2005) Arachidonic acid and ischemic heart disease. J Nutr 135(9):2271–2273

    PubMed  CAS  Google Scholar 

  28. Glew RH, Okolie H, Huang YS, Chuang LT, Suberu O, Crossey M, VanderJagt DJ (2004) Abnormalities in the fatty-acid composition of the serum phospholipids of stroke patients. J Natl Med Assoc 96(6):826–832

    PubMed  Google Scholar 

  29. Pozzi A, Macias-Perez I, Abair T, Wei S, Su Y, Zent R, Falck JR, Capdevila JH (2005) Characterization of 5,6- and 8,9-epoxyeicosatrienoic acids (5,6- and 8,9-EET) as potent in vivo angiogenic lipids. J Biol Chem 280(29):27138–27146

    Article  PubMed  CAS  Google Scholar 

  30. Mills GB, Moolenaar WH (2003) The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 3(8):582–591

    Article  PubMed  CAS  Google Scholar 

  31. Cezar-de-Mello PF, Vieira AM, Nascimento-Silva V, Villela CG, Barja-Fidalgo C, Fierro IM (2008) ATL-1, an analogue of aspirin-triggered lipoxin A4, is a potent inhibitor of several steps in angiogenesis induced by vascular endothelial growth factor. Br J Pharmacol 153(5):956–965

    Article  PubMed  CAS  Google Scholar 

  32. Xin X, Yang S, Kowalski J, Gerritsen ME (1999) Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem 274(13):9116–9121

    Article  PubMed  CAS  Google Scholar 

  33. Fleming I (2007) Epoxyeicosatrienoic acids, cell signaling and angiogenesis. Prostaglandins Other Lipid Mediat 82(1–4):60–67

    Article  PubMed  CAS  Google Scholar 

  34. Spector AA (2009) Arachidonic acid cytochrome P450 epoxygenase pathway. J Lipid Res 50(Suppl):S52–56

    Article  PubMed  Google Scholar 

  35. Pozzi A, Popescu V, Yang S, Mei S, Shi M, Puolitaival SM, Caprioli RM, Capdevila JH (2010) The anti-tumorigenic properties of peroxisomal proliferator-activated receptor alpha are arachidonic acid epoxygenase-mediated. J Biol Chem 285(17):12840–12850

    Article  PubMed  CAS  Google Scholar 

  36. Webler AC, Michaelis UR, Popp R, Barbosa-Sicard E, Murugan A, Falck JR, Fisslthaler B, Fleming I (2008) Epoxyeicosatrienoic acids are part of the VEGF-activated signaling cascade leading to angiogenesis. Am J Physiol Cell Physiol 295(5):C1292–1301

    Article  PubMed  CAS  Google Scholar 

  37. Michaelis UR, Falck JR, Schmidt R, Busse R, Fleming I (2005) Cytochrome P4502C9-derived epoxyeicosatrienoic acids induce the expression of cyclooxygenase-2 in endothelial cells. Arterioscler Thromb Vasc Biol 25(2):321–326

    Article  PubMed  CAS  Google Scholar 

  38. Wu WT, Chen CN, Lin CI, Chen JH, Lee H (2005) Lysophospholipids enhance matrix metalloproteinase-2 expression in human endothelial cells. Endocrinology 146(8):3387–3400

    Article  PubMed  CAS  Google Scholar 

  39. Gerrard JM, Robinson P (1989) Identification of the molecular species of lysophosphatidic acid produced when platelets are stimulated by thrombin. Biochim Biophys Acta 1001(3):282–285

    Article  PubMed  CAS  Google Scholar 

  40. Gaits F, Fourcade O, Le Balle F, Gueguen G, Gaige B, Gassama-Diagne A, Fauvel J, Salles JP, Mauco G, Simon MF, Chap H (1997) Lysophosphatidic acid as a phospholipid mediator: pathways of synthesis. FEBS Lett 410(1):54–58

    Article  PubMed  CAS  Google Scholar 

  41. Lee H, Liao JJ, Graeler M, Huang MC, Goetzl EJ (2002) Lysophospholipid regulation of mononuclear phagocytes. Biochim Biophys Acta 1582(1–3):175–177

    PubMed  CAS  Google Scholar 

  42. Shen Z, Belinson J, Morton RE, Xu Y (1998) Phorbol 12-myristate 13-acetate stimulates lysophosphatidic acid secretion from ovarian and cervical cancer cells but not from breast or leukemia cells. Gynecol Oncol 71(3):364–368

    Article  PubMed  CAS  Google Scholar 

  43. Zhang C, Baker DL, Yasuda S, Makarova N, Balazs L, Johnson LR, Marathe GK, McIntyre TM, Xu Y, Prestwich GD, Byun HS, Bittman R, Tigyi G (2004) Lysophosphatidic acid induces neointima formation through PPARgamma activation. J Exp Med 199(6):763–774

    Article  PubMed  CAS  Google Scholar 

  44. Zhao Y, Natarajan V (2009) Lysophosphatidic acid signaling in airway epithelium: role in airway inflammation and remodeling. Cell Signal 21(3):367–377

    Article  PubMed  CAS  Google Scholar 

  45. Prestwich GD, Gajewiak J, Zhang H, Xu X, Yang G, Serban M (2008) Phosphatase-resistant analogues of lysophosphatidic acid: agonists promote healing, antagonists and autotaxin inhibitors treat cancer. Biochim Biophys Acta 1781(9):588–594

    Article  PubMed  CAS  Google Scholar 

  46. Bektas M, Payne SG, Liu H, Goparaju S, Milstien S, Spiegel S (2005) A novel acylglycerol kinase that produces lysophosphatidic acid modulates cross talk with EGFR in prostate cancer cells. J Cell Biol 169(5):801–811

    Article  PubMed  CAS  Google Scholar 

  47. Spiegel S, Merrill AH Jr (1996) Sphingolipid metabolism and cell growth regulation. FASEB J 10(12):1388–1397

    PubMed  CAS  Google Scholar 

  48. Panchatcharam M, Miriyala S, Yang F, Rojas M, End C, Vallant C, Dong A, Lynch K, Chun J, Morris AJ, Smyth SS (2008) Lysophosphatidic acid receptors 1 and 2 play roles in regulation of vascular injury responses but not blood pressure. Circ Res 103(6):662–670

    Article  PubMed  CAS  Google Scholar 

  49. Moolenaar WH (1999) Bioactive lysophospholipids and their G protein-coupled receptors. Exp Cell Res 253(1):230–238

    Article  PubMed  CAS  Google Scholar 

  50. An S, Bleu T, Zheng Y, Goetzl EJ (1998) Recombinant human G protein-coupled lysophosphatidic acid receptors mediate intracellular calcium mobilization. Mol Pharmacol 54(5):881–888

    PubMed  CAS  Google Scholar 

  51. Tigyi G, Fischer DJ, Sebok A, Marshall F, Dyer DL, Miledi R (1996) Lysophosphatidic acid-induced neurite retraction in PC12 cells: neurite-protective effects of cyclic amp signaling. J Neurochem 66(2):549–558

    Article  PubMed  CAS  Google Scholar 

  52. Stahle M, Veit C, Bachfischer U, Schierling K, Skripczynski B, Hall A, Gierschik P, Giehl K (2003) Mechanisms in LPA-induced tumor cell migration: critical role of phosphorylated ERK. J Cell Sci 116(Pt 18):3835–3846

    Article  PubMed  Google Scholar 

  53. Seewald S, Schmitz U, Seul C, Ko Y, Sachinidis A, Vetter H (1999) Lysophosphatidic acid stimulates protein kinase C isoforms alpha, beta, epsilon, and zeta in a pertussis toxin sensitive pathway in vascular smooth muscle cells. Am J Hypertens 12(5):532–537

    Article  PubMed  CAS  Google Scholar 

  54. Hayashi K, Takahashi M, Nishida W, Yoshida K, Ohkawa Y, Kitabatake A, Aoki J, Arai H, Sobue K (2001) Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acids. Circ Res 89(3):251–258

    Article  PubMed  CAS  Google Scholar 

  55. Yoshida K, Nishida W, Hayashi K, Ohkawa Y, Ogawa A, Aoki J, Arai H, Sobue K (2003) Vascular remodeling induced by naturally occurring unsaturated lysophosphatidic acid in vivo. Circulation 108(14):1746–1752

    Article  PubMed  Google Scholar 

  56. Fierro IM, Kutok JL, Serhan CN (2002) Novel lipid mediator regulators of endothelial cell proliferation and migration: aspirin-triggered-15R-lipoxin A(4) and lipoxin A(4). J Pharmacol Exp Ther 300(2):385–392

    Article  PubMed  CAS  Google Scholar 

  57. Cezar-de-Mello PF, Nascimento-Silva V, Villela CG, Fierro IM (2006) Aspirin-triggered lipoxin A4 inhibition of VEGF-induced endothelial cell migration involves actin polymerization and focal adhesion assembly. Oncogene 25(1):122–129

    PubMed  CAS  Google Scholar 

  58. Pouliot M, Serhan CN (1999) Lipoxin A4 and aspirin-triggered 15-epi-LXA4 inhibit tumor necrosis factor-alpha-initiated neutrophil responses and trafficking: novel regulators of a cytokine-chemokine axis relevant to periodontal diseases. J Periodontal Res 34(7):370–373

    Article  PubMed  CAS  Google Scholar 

  59. Hachicha M, Pouliot M, Petasis NA, Serhan CN (1999) Lipoxin (LX)A4 and aspirin-triggered 15-epi-LXA4 inhibit tumor necrosis factor 1alpha-initiated neutrophil responses and trafficking: regulators of a cytokine-chemokine axis. J Exp Med 189(12):1923–1930

    Article  PubMed  CAS  Google Scholar 

  60. Gewirtz AT, McCormick B, Neish AS, Petasis NA, Gronert K, Serhan CN, Madara JL (1998) Pathogen-induced chemokine secretion from model intestinal epithelium is inhibited by lipoxin A4 analogs. J Clin Invest 101(9):1860–1869

    Article  PubMed  CAS  Google Scholar 

  61. Teutsch SM, Cohen JT (2005) Health trade-offs from policies to alter fish consumption. Am J Prev Med 29(4):324

    Article  PubMed  Google Scholar 

  62. Takano T, Clish CB, Gronert K, Petasis N, Serhan CN (1998) Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues. J Clin Invest 101(4):819–826

    Article  PubMed  CAS  Google Scholar 

  63. Imaizumi T, Matsumiya T, Tamo W, Shibata T, Fujimoto K, Kumagai M, Yoshida H, Cui XF, Tanji K, Hatakeyama M, Wakabayashi K, Satoh K (2002) 15-Deoxy-D12,14-prostaglandin J2 inhibits CX3CL1/fractalkine expression in human endothelial cells. Immunol Cell Biol 80(6):531–536

    Article  PubMed  CAS  Google Scholar 

  64. Kim EH, Na HK, Surh YJ (2006) Upregulation of VEGF by 15-deoxy-delta12,14-prostaglandin J2 via heme oxygenase-1 and ERK1/2 signaling in MCF-7 cells. Ann N Y Acad Sci 1090:375–384

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Block .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Block, R.C., Yalcin, M., Srinivasan, M., Georas, S., Mousa, S.A. (2013). Angiogenesis Modulation by Arachidonic Acid-derived Lipids: Positive and Negative Regulators of Angiogenesis. In: Mousa, S., Davis, P. (eds) Angiogenesis Modulations in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6467-5_3

Download citation

Publish with us

Policies and ethics