Skip to main content

Adaptation of Antarctic Freshwater Green Algae to Extreme Environments

  • Chapter
  • First Online:
Polyextremophiles

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 27))

Abstract

Antarctica as the coldest area on earth presents an extremely harsh environment for all living organisms inhabiting this frigid zone. Freshwater green algae, such as Chlamydomonas, Stichococcus, Chlorella, and Scenedesmus, have been isolated from Antarctica. These strains are distributed in all the areas of Antarctica and have successfully adapted to the extreme environmental conditions. The freshwater green algae residing in this area have evolved a set of strategies to counteract the effects of the extremely low and fluctuating temperature, desiccation, ultraviolet radiation, freeze-thaw cycles, etc. These adaptations include the alteration of cell morphology, ultrastructure, physiology, biochemical composition, and gene expression. Currently, although some genes and proteins related to cold adaptation or acclimation have been identified in these algae, the corresponding molecular mechanism is still obscure. The goal of this review is to describe the adaptive strategies of Antarctic freshwater green algae to extreme environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Becker EW (1982) Physiological studies on Antarctic Prasiola crispa and Nostoc commune at low temperatures. Polar Biol 1:99–104

    CAS  Google Scholar 

  • Buma AGJ, Engelen AH, Gieskes WWC (1997) Wavelength dependent induction of thymine dimers and growth rate reduction in the marine diatom Cyclotella sp. exposed to ultraviolet radiation. Mar Ecol Prog Ser 153:91–97

    Article  CAS  Google Scholar 

  • Chakrabortee S, Boschetti C, Walton LJ, Sarkar S, Rubinsztein DC, Tunnacliffe A (2007) Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proc Natl Acad Sci U S A 104:18073–18078

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, He C, Hu H (2012a) Temperature responses of growth, photosynthesis, fatty acid and nitrate reductase in Antarctic and temperate Stichococcus. Extremophiles 16:127–133

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Gong Y, Fang X, Hu H (2012b) Scenedesmus sp. NJ-1 isolated from Antarctica: a suitable renewable lipid source for biodiesel production. World J Microbiol Biotechnol 28:3219–3225

    Article  PubMed  CAS  Google Scholar 

  • Chong G-L, Chu W-L, Othman RY, Phang S-M (2011) Differential gene expression of an Antarctic Chlorella in response to temperature stress. Polar Biol 34:637–645

    Article  Google Scholar 

  • Coles JF, Jones RC (2000) Effect of temperature on photosynthesis-light response and growth of four phytoplankton species isolated from a tidal freshwater river. J Phycol 36:7–16

    Article  CAS  Google Scholar 

  • De Wever A, Leliaert F, Verleyen E, Vanormelingen P, Van der Gucht K, Hodgson DA, Sabbe K, Vyverman W (2009) Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proc R Soc B 276:3591–3599

    Article  PubMed  Google Scholar 

  • Di Martino Rigano V, Vona V, Lobosco O, Carillo P, Lunn JE, Carfagna S, Esposito S, Caiazzo M, Rigano C (2006) Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella antarctica and the mesophilic alga Chlorella sorokiniana. Plant Cell Environ 29:1400–1409

    Article  Google Scholar 

  • Ding Y, Miao J-L, Wang Q-F, Zheng Z, Li G-Y, Jian J-C, Wu Z-H (2007) Purification and characterization of a psychrophilic glutathione reductase from Antarctic ice microalgae Chlamydomonas sp. strain ICE-L. Polar Biol 31:23–30

    Article  Google Scholar 

  • Feller G (2007) Life at low temperatures: is disorder the driving force? Extremophiles 11:211–216

    Article  PubMed  CAS  Google Scholar 

  • Frederick JE, Qu Z, Booth CR (1998) Ultraviolet radiation at sites on the Antarctic coast. Photochem Photobiol 68:183–190

    Article  CAS  Google Scholar 

  • Hawes I (1990) Effects of freezing and thawing on a species of Zygnema (Chlorophyta) from the Antarctica. Phycologia 29:326–331

    Article  Google Scholar 

  • Hawes I, Smith R, Howard-Williams C, Schwarz A-M (1999) Environmental conditions during freezing, and response of microbial mats in ponds of the McMurdo Ice Shelf, Antarctica. Antarct Sci 11:198–208

    Article  Google Scholar 

  • Hu H, Li H, Xu X (2008) Alternative cold response modes in Chlorella (Chlorophyta, Trebouxiophyceae) from Antarctica. Phycologia 47:28–34

    Article  CAS  Google Scholar 

  • Hughes KA (2006) Solar UV-B radiation, associated with ozone depletion, inhibits the Antarctic terrestrial microalga, Stichococcus bacillaris. Polar Biol 29:327–336

    Article  Google Scholar 

  • Huiskes AD (2007) Evolution and biodiversity in the Antarctic: the response of life to change. Antarct Sci 19:279–281

    Article  Google Scholar 

  • Lesser MP, Barry TM, Banaszak AT (2002) Effects of UV radiation on a chlorophyte alga (Scenedesmus sp.) isolated from the fumarole fields of Mt. Erebus, Antarctica. J Phycol 38:473–481

    Google Scholar 

  • Li H, Liu X, Wang Y, Hu H, Xu X (2009) Enhanced expression of antifreeze protein genes drives the development of freeze tolerance in an Antarctica isolate of Chlorella. Prog Nat Sci 19:1059–1062

    Article  CAS  Google Scholar 

  • Ling HU (2001) Snow algae of the Windmill Islands, continental Antarctica: Desmotetra aureospora, sp. nov. and D. antarctica, comb. nov. (Chlorophyta). J Phycol 37:160–174

    Article  Google Scholar 

  • Liu X, Wang Y, Gao H, Xu X (2011) Identification and characterization of genes encoding two novel LEA proteins in Antarctic and temperate strains of Chlorella vulgaris. Gene 482:51–58

    Article  PubMed  CAS  Google Scholar 

  • Loppes R, Devos N, Willem S, Barthélemy P, Matagne RF (1996) Effect of temperature on two enzymes from a psychrophilic Chloromonas (Chlorophyta). J Phycol 32:276–278

    Article  CAS  Google Scholar 

  • Lu Y, Chi X, Yang Q, Li Z, Liu S, Gan Q, Qin S (2009) Molecular cloning and stress-dependent expression of a gene encoding ∆12-fatty acid desaturase in the Antarctic microalga Chlorella vulgaris NJ-7. Extremophiles 13:875–884

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Chi X, Li Z, Yang Q, Li F, Liu S, Gan Q, Qin S (2010) Isolation and characterization of a stress-dependent plastidial ∆12 fatty acid desaturase from the Antarctic microalga Chlorella vulgaris NJ-7. Lipids 45:179–187

    Article  PubMed  CAS  Google Scholar 

  • McKnight DM, Howes BL, Taylor CD, Goehringer DD (2000) Phytoplankton dynamics in a stably stratified Antarctic lake during winter darkness. J Phycol 36:852–861

    Article  CAS  Google Scholar 

  • Melis A (1998) Photostasis in plants: mechanisms and regulation. In: Thistle WA (ed) Photostasis and related phenomena. Plenum Press, New York, pp 207–221

    Chapter  Google Scholar 

  • Mock T, Hoch N (2005) Long-term acclimation of photosynthesis in steady-state cultures of the polar diatom Fragilariopsis cylindrus. Photosynth Res 85:307–317

    Article  PubMed  CAS  Google Scholar 

  • Morgan RM, Ivanov AG, Priscu JC, Maxwell DP, Huner NPA (1998) Structure and composition of the photochemical apparatus of the Antarctic green alga, Chlamydomonas subcaudata. Photosynth Res 56:303–314

    Article  CAS  Google Scholar 

  • Morgan-Kiss R, Ivanov AG, Williams J, Khan M, Huner NPA (2002a) Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga. Biochim Biophys Acta 1561:251–265

    Article  PubMed  CAS  Google Scholar 

  • Morgan-Kiss RM, Ivanov AG, Huner NPA (2002b) The Antarctic psychrophile, Chlamydomonas subcaudata, is deficient in state I-state II transitions. Planta 214:435–445

    Article  PubMed  CAS  Google Scholar 

  • Morgan-Kiss RM, Ivanov AG, Pocock T, Król M, Gudynaite-Savitch L, Hüner NPA (2005) The Antarctic psychrophile, Chlamydomonas raudensis Ettl (UWO241) (Chlorophyceae, Chlorophyta) exhibits a limited capacity to photoacclimate to red light. J Phycol 41:791–800

    Article  Google Scholar 

  • Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol R 70:222–252

    Article  CAS  Google Scholar 

  • Morgan-Kiss RM, Ivanov AG, Modla S, Czymmek K, Hüner NPA, Priscu JC, Lisle JT, Hanson TE (2008) Identity and physiology of a new psychrophilic eukaryotic green alga, Chlorella sp., strain BI, isolated from a transitory pond near Bratina Island, Antarctica. Extremophiles 12:701–711

    Article  PubMed  CAS  Google Scholar 

  • Nagao M, Matsui K, Uemura M (2008) Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. Plant Cell Environ 31:872–885

    Article  PubMed  CAS  Google Scholar 

  • Nagashima H, Shimizu M, Ohtani S, Momose H (1993) Effects of temperature on the photosynthesis of Antarctic freshwater green algae (abstract). Proc NIPR Symp Polar Biol 6:178

    Google Scholar 

  • Nagashima H, Matsumoto GI, Ohtani S, Momose H (1995) Temperature acclimation and the fatty acid composition of an Antarctic green alga Chlorella. Proc NIPR Symp Polar Biol 8:194–199

    Google Scholar 

  • Pocock T, Lachance M-A, Pröschold T, Priscu JC, Kim SS, Hüner NPA (2004) Identification of a psychrophilic green alga from Lake Bonney Antarctica: Chlamydomonas raudensis Ettl. (UWO 241) Chlorophyceae. J Phycol 40:1138–1148

    Article  Google Scholar 

  • Pocock T, Vetterli A, Falk S (2011) Evidence for phenotypic plasticity in the Antarctic extremophile Chlamydomonas raudensis Ettl. UWO 241. J Exp Bot 62:1169–1177

    Article  PubMed  CAS  Google Scholar 

  • Reyes JL, Rodrigo M-J, Colmenero-Flores JM, Gil J-V, Garay-Arroyo A, Campos F, Salamini F, Bartels D, Covarrubias AA (2005) Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ 28:709–718

    Article  CAS  Google Scholar 

  • Singh J, Dubey AK, Singh RP (2011) Antarctic terrestrial ecosystem and role of pigments in enhanced UV-B radiations. Rev Environ Sci Biotechnol 10:63–77

    Article  Google Scholar 

  • Teoh M-L, Chu W-L, Marchant H, Phang S-M (2004) Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J Appl Phycol 16:421–430

    Article  CAS  Google Scholar 

  • Vona V, Di Martino Rigano V, Lobosco O, Carfagna S, Esposito S, Rigano C (2004) Temperature responses of growth, photosynthesis, respiration and NADH: nitrate reductase in cryophilic and mesophilic algae. New Phytol 163:325–331

    Article  CAS  Google Scholar 

  • Wang Y, Liu X, Gao H, Xu X (2011) Characterization of the tandem-arrayed hiC6 genes in Antarctic and temperate strains of Chlorella vulgaris. FEMS Microbiol Lett 325:130–139

    Article  PubMed  CAS  Google Scholar 

  • Wiencke C, Dieck I (1990) Temperature requirements for growth and survival of macroalgae from Antarctica and southern Chile. Mar Ecol Prog Ser 59:157–170

    Article  Google Scholar 

  • Wong CY, Chu WL, Marchant H, Phang SM (2007) Comparing the response of Antarctic, tropical and temperate microalgae to ultraviolet radiation (UVR) stress. J Appl Phycol 19:689–699

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanhua Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hu, H. (2013). Adaptation of Antarctic Freshwater Green Algae to Extreme Environments. In: Seckbach, J., Oren, A., Stan-Lotter, H. (eds) Polyextremophiles. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6488-0_18

Download citation

Publish with us

Policies and ethics