Skip to main content

From Conference to Community: An ICTMA Journey—The Ken Houston Inaugural Lecture

  • Chapter
  • First Online:
Teaching Mathematical Modelling: Connecting to Research and Practice

Abstract

As a community ICTMA draws on its conference tradition as well as developing new directions in research and practice to enhance its mission of promoting the teaching and learning of mathematical modelling and applications at all levels of education. This chapter reflects on aspects of its mission with respect to the integrity of modelling activity, authenticity of its approach to modelling, characteristics aimed to enhance a supportive and collaborative community, and activity within representative research foci. It concludes by identifying avenues for advocacy aimed at assuring a productive and vibrant future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpers, B. (2011). The mathematical expertise of mechanical engineers: The case of mechanism design. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling: The 14th ICMI study (New ICMI studies series, pp. 99–108). New York: Springer.

    Google Scholar 

  • Ärlebäck, J. (2009). On the use of realistic Fermi problems for introducing mathematical modelling in school. The Montana Mathematics Enthusiast, 6(3), 331–364.

    Google Scholar 

  • Australian Curriculum, Assessment and Reporting Authority. (2010). Mathematics: Draft consultation version 1.1.0 Australian Curriculum. Available from www.australiancurriculum.edu.au/Documents/Mathematicscurriculum.pdf. Accessed 30 April 2011.

  • Barbosa, J. (2006). Mathematical modelling in classrooms: A socio-critical and discursive perspective. Zentralblatt für Didaktik der Mathematik, 38(3), 293–301.

    Article  Google Scholar 

  • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects – State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37–68.

    Article  Google Scholar 

  • Blum, W., & Leiß, D. (2007). How do students and teachers deal with modeling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 222–231). Chichester: Horwood.

    Google Scholar 

  • Blum, W., Galbraith, P. L., Henn, H.-W., & Niss, M. (Eds.). (2007). Modelling and applications in mathematics education (New ICMI studies series No. 10). New York: Springer.

    Google Scholar 

  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modeling process. Zentralblatt für Didaktik der Mathematik, 38(2), 86–95.

    Article  Google Scholar 

  • Brown, A. L., Ash, D., Rutherford, M., Nakagawa, K., Gordon, A., & Campione, J. (1993). Distributed expertise in the classroom. In G. Salomon (Ed.), Distributed cognitions (pp. 188–228). Cambridge: Cambridge University Press.

    Google Scholar 

  • D’Ambrosio, U. (1985). Ethnomathematics and its place in the history and pedagogy of mathematics. For the Learning of Mathematics, 5, 44–48.

    Google Scholar 

  • Doorman, L., & Gravemeijer, K. (2009). Emergent modeling: Discrete graphs to support the understanding of change and velocity. Zentralblatt für Didaktik der Mathematik, 41, 199–211.

    Article  Google Scholar 

  • English, L. D. (2011). Modelling with complex data in the primary school. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling: ICTMA 14 (pp. 287–299). New York: Springer.

    Google Scholar 

  • Forman, E. A., & McPhail, J. (1993). Vygotskian perspective on children’s collaborative problem-solving activities. In E. A. Forman, N. Minick, & C. A. Stone (Eds.), Contexts for learning: Sociocultural dynamics in children’s development (pp. 213–229). New York: Oxford University Press.

    Google Scholar 

  • Freudenthal, H. (1968). Why to teach mathematics so as to be useful? Educational Studies in Mathematics, 1, 3–8.

    Article  Google Scholar 

  • Galbraith, P. L., & Clatworthy, N. J. (1990). Beyond standard models: Meeting the challenge of modelling. Educational Studies in Mathematics, 21(2), 137–163.

    Article  Google Scholar 

  • Galbraith, P., & Stillman, G. (2001). Assumptions and context: Pursuing their role in modelling activity. In J. Matos, S. Houston, W. Blum, & S. Carreira (Eds.), Modelling and mathematics education: Applications in science and technology (pp. 317–327). Chichester: Horwood.

    Google Scholar 

  • Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. Zentralblatt für Didaktik der Mathematik, 38(2), 143–162.

    Article  Google Scholar 

  • Garfunkel, S. (2004). Research on the teaching and learning of mathematical modelling. In H.-W. Henn & W. Blum (Eds.), ICMI study 14: Applications and modelling in mathematics education: Pre-conference volume (pp. 89–96). Kassel: University of Kassel.

    Google Scholar 

  • Geiger, V., Faragher, R., & Goos, M. (2010). CAS-enabled technologies as ‘agents provocateur, in teaching and learning mathematical modelling in secondary classrooms’. Mathematics Education Research Journal, 22(2), 48–68.

    Article  Google Scholar 

  • Goos, M. (2002). Understanding metacognitive failure. The Journal of Mathematical Behavior, 21(3), 283–302.

    Article  Google Scholar 

  • Gravemeijer, K. (2007). Emergent modelling as a precursor to mathematical modelling. In W. Blum, P. Galbraith, M. Niss, & H.-W. Henn (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 137–144). New York: Springer.

    Chapter  Google Scholar 

  • Haines, C., & Crouch, R. (2007). Mathematical modelling and applications: Ability and competence frameworks. In W. Blum, P. Galbraith, M. Niss, & H.-W. Henn (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 417–424). New York: Springer.

    Chapter  Google Scholar 

  • Houston, S. K., & Neill, N. (2003). Assessding modelling skills. In S. J. Lamon, W. A. Parker, & S. K. Houston (Eds.), Mathematical modelling: A way of life (pp. 155–164). Chichester: Horwood.

    Google Scholar 

  • Houston, K., Galbraith, P., & Kaiser, G. (2008). ICTMA: The International Community of Teachers of Mathematical Modelling and Applications – The first twenty-five years. http://www.icmihistory.unito.it/ictma.php. Accessed 25 Sept 2011.

  • Jablonka, E. (1996). Meta-Analyse von Zugängen zur mathematischen modellbildung und Konsequenzen für den Unterricht. Dissertation, Transparent -Verl. Preuss, Berlin.

    Google Scholar 

  • Jablonka, E., & Gellert, U. (2007). Mathematisation – Demathematisation. In U. Gellert & E. Jablonka (Eds.), Mathematisation and demathematisation: Social, philosophical and educational ramifications (pp. 1–18). Rotterdam: Sense Publishers.

    Google Scholar 

  • Jablonka, E., & Gellert, U. (2011). Equity concerns about mathematical modelling. In B. Atweh, M. Graven, & W. Secada (Eds.), Mapping equity and quality in mathematics education. Part 2 (pp. 223–236). New York: Springer.

    Google Scholar 

  • Julie, C. (1993). People’s mathematics and the applications of mathematics. In J. de Lange, C. Keitel, I. D. Huntley, & M. Niss (Eds.), Innovation in maths education by modelling and applications (pp. 31–40). Chichester: Ellis Horwood.

    Google Scholar 

  • Julie, C., & Mudaly, V. (2007). Mathematical modelling of social issues in school mathematics in South Africa. In W. Blum, P. Galbraith, M. Niss, & H.-W. Henn (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 503–510). New York: Springer.

    Chapter  Google Scholar 

  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modeling in mathematics education. Zentralblatt für Didaktik der Mathematik, 38(3), 302–310.

    Article  Google Scholar 

  • Kaiser, G., Blomhoj, M., & Sriraman, B. (2006). Towards a didactical theory for mathematical modeling. Zentralblatt für Didaktik der Mathematik, 38(2), 82–85.

    Article  Google Scholar 

  • Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lesh, R., & Doerr, H. M. (Eds.). (2003). Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Maaß, K. (2007). Modelling in class: What do we want the students to learn? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA12): Education, engineering and economics (pp. 63–78). Chichester: Horwood.

    Google Scholar 

  • McLone, R. R. (1973). The training of mathematicians Social Sciences Research Council Report. London: SSRC.

    Google Scholar 

  • Niss, M. (2001). Issues and problems of research on the teaching and learning of applications and modelling. In J. F. Matos, W. Blum, S. K. Houston, & S. P. Carreira (Eds.), Modelling and mathematics education: ICTMA 9: Applications in science and technology (pp. 72–88). Chichester: Horwood.

    Chapter  Google Scholar 

  • Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. Galbraith, M. Niss, & H.-W. Henn (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 3–33). New York: Springer.

    Chapter  Google Scholar 

  • OECD. (2001). Knowledge and skills for life: First results from PISA 2000. Paris: OECD.

    Google Scholar 

  • Osawa, H. (2002). Mathematics of a relay – Problem solving in the real world. Teaching Mathematics and Applications, 21(2), 85–93.

    Article  Google Scholar 

  • Pedley, T. J. (2005). Applying mathematics. Mathematics Today, 41(3), 79–83.

    Google Scholar 

  • Pierce, R., & Stacey, K. (2006). Enhancing the image of mathematics by association with simple pleasures from real world contexts. Zentralblatt für Didaktik der Mathematik, 38(3), 214–225.

    Article  Google Scholar 

  • Pollak, H. O. (1979). The interaction between mathematics and other school subjects. In New trends in mathematics teaching IV (pp. 232–248). Paris: UNESCO.

    Google Scholar 

  • Pollak, H. O. (1984). Applications and teaching of mathematics. In J. S. Berry, D. N. Burghes, I. D. Huntley, D. J. D. James, & A. O. Moscardini (Eds.), Teaching and applying mathematical modelling (pp. xv–xvi). Chichester: Ellis Horwood.

    Google Scholar 

  • Riede, A. (2003). Two modelling topics in teacher education and training. In Q.-X. Ye, W. Blum, K. Houston, & Q.-Y. Jiang (Eds.), Mathematical modelling in education and culture (ICTMA 10) (pp. 209–222). Chichester: Horwood.

    Chapter  Google Scholar 

  • Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Stillman, G. (2011). Applying metacognitive knowledge and strategies to applications and modelling tasks at secondary school. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling: ICTMA 14 (pp. 165–180). New York: Springer.

    Chapter  Google Scholar 

  • Stillman, G., Brown, J., & Galbraith, P. (2008). Research into the teaching and learning of applications and modelling in Australasia. In H. Forgasz, A. Barkatsas, A. Bishop, B. Clarke, S. Keast, W. T. Seah, & P. Sullivan (Eds.), Research in mathematics education in Australasia 2004–2007 (pp. 141–164). Rotterdam: Sense Publishers.

    Google Scholar 

  • Stillman, G., Brown, J., & Galbraith, P. (2010). Researching applications and mathematical modelling in mathematics learning and teaching [Editorial]. Mathematics Education Research Journal, 22(2), 1–6.

    Article  Google Scholar 

  • Verschaffel, L., van Dooren, W., Greer, B., & Mukhopadhyay, S. (2010). Reconceptualising word problems as exercises in mathematical modelling. Journal of Mathematical Didaktics, 31, 9–29.

    Article  Google Scholar 

  • Wenger, E. (2006). Communities of practice: A brief introduction. http://www.ewenger.com/theory/communities_of_practice_intro.htm. Accessed 25 Sept 2011.

  • Zbiek, R., & Connor, A. (2006). Beyond motivation: Exploring mathematical modeling as a context for deepening students’ understandings of curricular mathematics. Educational Studies in Mathematics, 63(1), 89–112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Galbraith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Galbraith, P. (2013). From Conference to Community: An ICTMA Journey—The Ken Houston Inaugural Lecture . In: Stillman, G., Kaiser, G., Blum, W., Brown, J. (eds) Teaching Mathematical Modelling: Connecting to Research and Practice. International Perspectives on the Teaching and Learning of Mathematical Modelling. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6540-5_2

Download citation

Publish with us

Policies and ethics