Skip to main content

Modelling Site-Specific Biomass Potentials

  • Chapter
  • First Online:
Sustainable Bioenergy Production - An Integrated Approach
  • 1319 Accesses

Abstract

During the past few years, increasing energy prices and climate protection policies have boosted the use of renewable energy sources in Germany. In particular, the conversion of biomass from agricultural land into liquid or gaseous fuels is estimated to make up nearly 40 % of the country’s future renewable energies mix (BMU 2009 and BMVBS, Globale und regionale Verteilung von Biomassepotentialen. Status-que und Möglichkeiten der Präzisierung. BMVBS-Online Publikationen 27/2010, Ministerium für Verkehr (BRD), 2010). Different methodologies and modelling approaches can be used to estimate or calculate biomass potentials. In this chapter, we describe a method for estimating agricultural biomass potentials, namely the carbon-based crop modelling approach (Azam Ali et al. Perspectives in modelling resource capture by crops. In Resource capture by crops. Proceedings of the 52nd University of Nottingham Easter School (pp. 125–148). Nottingham: Nottingham University Press, 1994), and briefly compare it with other methods.

Scientists at the University of Göttingen and the LBEG (Lower Saxony state office of mining, energy and geology) in Hanover developed a carbon-based crop model (BioSTAR) with which to assess site-specific and larger area biomass potentials in Lower Saxony. Using measured agricultural harvest data from a farm in the Wolfenbuettel district (from 2005 to 2008), the first validations of the model have rendered satisfactory results. In respect of sugar beet, winter wheat and maize, the stability index of the modelled yields spans from R2 = 0.72 (s-beet) and R2 = 0.82 (w-wheat) to R2 = 0.88 (maize). In order to further expand agricultural biomass’s use in biogas facilities in the administration district of Göttingen, the Jühnde district’s biomass potential was calculated using the BioSTAR tool. Depending on the intensity and crop rotation, the Jühnde district’s (≈5–7.5 km radius) annual biomass potentials are between 12,935 and 46,306 t of total dry mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). FAO irrigation and drainage papers no.56, Crop Evapotranspiration, Rome.

    Google Scholar 

  • Amthor, J. S. (1989). Respiration and crop productivity. New York/Berlin/Heidelberg: Springer. ISBN 0-387-96938-1.

    Book  Google Scholar 

  • Arkebauer, T. J., Weiss, A., Sinclair, T. R., & Blum, A. (1992). In defence of radiation use efficiency: A response to Demetriades-Shah et al. Agricultural and Forest Meteorology, 68(3–4), 221–227.

    Google Scholar 

  • Azam-Ali, S. N., Crout, N. M. J., & Bradley, R. G. (1994). Perspectives in modelling resource capture by crops. In Some perspectives in modelling resource capture by crops. Proceedings of 52nd Easter School in Agricultural Science. Sutton Bonington, UK.

    Google Scholar 

  • Bauböck, R. (2009). Bioenergie im Landkreis Göttingen – GIS-gestützte Biomassepotentialabschätzung anhand ausgewählter Kulturen, Triticale und Mais. Stuttgart: Ibidem.

    Google Scholar 

  • BMU. (2007). The integrated energy and climate programme of the German government. Berlin. Retrieved December 8, 2012, from http://www.bmu.de/files/english/pdf/application/pdf/hintergrund_meseberg_en.pdf

  • BMU (2009). Nationaler Biomasseaktionsplan für Deutschland [Online]. Retrieved February 16, 2012, from http://www.bmu.de/files/english/pdf/application/pdf/broschuere_biomasseaktionsplan_en_bf.pdf

  • BMVBS. (2010). Globale und regionale Verteilung von Biomassepotentialen. Status-que und Möglichkeiten der Präzisierung. BMVBS-Online Publikationen 27/2010. Ministerium für Verkehr (BRD), 2010. ISSN 1869–9324.

    Google Scholar 

  • Boote, K. J., & Loomis, R. S. (1991). The prediction of canopy assimilation. Modeling photosynthesis – From biochemistry to canopy. CSSA Special Publication no.19.

    Google Scholar 

  • Bouman, B. A. M., van Keulen, H., van Laar, H. H., & Rabbinge, R. (1996). The “School of de Wit” crop growth simulation models: A pedigree and historical overview. Agricultural Systems, 52(2/3), 171–198.

    Article  Google Scholar 

  • Brisson, N., Gary, C., Justes, E., Roche, R., et al. (2003). An overview of the crop model STICS. European Journal of Agronomy, 18, 309–332.

    Article  Google Scholar 

  • Choudhury, B. J. (2000). A sensitivity analysis of the radiation use efficiency for gross photosynthesis and net carbon accumulation by wheat. Agricultural and Forest Meteorology, 101, 217–234.

    Article  Google Scholar 

  • Choudhury, B. J. (2001). Modeling radiation- and carbon-use efficiencies of maize, sorghum, and rice. Agricultural and Forest Meteorology, 106, 317–330.

    Article  Google Scholar 

  • Demetriades-Shaw, T. H., Fuchs, M., Kanemasu, E. T., & Flitcroft, I. (1992). A note of caution concerning the relationship between cumulated intercepted solar radiation and crop growth. Agricultural and Forest Meteorology, 58, 193–207.

    Article  Google Scholar 

  • Demetriades-Shaw, T. H., Fuchs, M., Kanemasu, E. T., & Flitcroft, I. (1994). Further discussions on the relationship between cumulated intercepted solar radiation and crop growth. Agricultural and Forest Meteorology, 68, 231–242.

    Article  Google Scholar 

  • FNR. (2011). Fachagentur für nachwachsende Rohstoffe: Basisdaten Bioenergie, Gülzow. Retrieved March 25, 2013, from http://mediathek.fnr.de/media/downloadable/files/samples/f/n/fnr_basisdaten_2012_web_neu.pdf

  • Garcia, R., Kanemasu, E. T., Blad, B. L., Bauer, A., Hatfield, J. L., Major, D. J., Reginato, R. J., & Hubbard, K. G. (1988). Interception and use efficiency of light in winter wheat under different nitrogen regimes. Agricultural and Forest Meteorology, 44, 175–186.

    Article  Google Scholar 

  • Gardener, F., Pearce, R. B., & Mitchell, R. L. (1985). Plant physiology. Ames: Iowa State University Press.

    Google Scholar 

  • Lindquis, J. L., Arkebauer, T. J., Walters, D. T., Cassman, K. G., & Dobermann, A. (2005). Maize radiation use efficiency under optimal growth conditions. Agronomy Journal, 97(1), 2–78.

    Google Scholar 

  • Loomis, R. S., & Amthor, J. S. (1999). Yield potential, plant assimilatory capacity, and metabolic efficiencies. Crop Science, 39, 1584–1596.

    Article  CAS  Google Scholar 

  • Mailhol, J. C., Olufayo, A. A., & Ruelle, P. (1997). Sorghum and Sunflower evapotranspiration and yield from simulated leaf area index. Agricultural Water Management, 35, 167–182.

    Article  Google Scholar 

  • Mc Cree, K. J. (1970). An equation for the rate of respiration of white clover plants grown under controlled conditions. In I. Setlik (Ed.), Prediction and measurement of photosynthetic productivity (Proceedings of IBP/PP Technical Meeting, Trebon, Czechoslovakia), (pp. 221–229). Wageningen: PUDOC.

    Google Scholar 

  • Merta, M., Seidler, C., & Fjodorowa, T. (2006). Estimation of evaporation components in agricultural crops. Biologia Bratislava, 61(Suppl. 19), 280–283.

    Article  Google Scholar 

  • Monsi, M., & Saeki, T. (2005). On the factor of light in plant communities and its importance for matter production. Annals of Botany, 95, 549–567.

    Article  Google Scholar 

  • Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society Series B, 281, 277–294.

    Article  Google Scholar 

  • Monteith, J. L. (1994). Validity of the correlation between intercepted radiation and biomass. Agricultural and Forest Meteorology, 68, 213–220.

    Article  Google Scholar 

  • Penning de-Vries, F.W.T., Jansen, D. M., ten Berge, H. F. M., & Bakema, A. (1989). Simulation of ecophysiological processes of growth in several annual crops. Simulation monographs. Wageningen: Pudoc.

    Google Scholar 

  • Philip, J. R. (1966). Plant water relations: Some physical aspects. Annual Review of Plant Physiology, 17, 245–268.

    Article  Google Scholar 

  • Ritchie, J. T. (1972). Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research, 8(5), 1204–1213.

    Article  Google Scholar 

  • Sinclair, T. R., & Muchow, R. C. (1999). Occam’s Razor, radiation-use efficiency, and vapor pressure deficit. Field Crops Research, 62(2), 239–243.

    Article  Google Scholar 

  • Sinclair, T. R., & Seligman, N. G. (1996). Crop modeling: From infancy to maturity. Agronomy Journal, 88, 698–704.

    Article  Google Scholar 

  • Steduto, P., & Albrizio, R. (2005). Resource use efficiency of field grown sunflower, sorghum, wheat and chickpea. II. Water use efficiency and comparison with radiation use efficiency. Agricultural and Forest Meteorology, 130, 269–281.

    Article  Google Scholar 

  • Steduto, P., Hsiao, T. C., & Fereres, E. (2007). On the conservative behaviour of biomass water productivity. Irrigation Science, 25, 189–207.

    Article  Google Scholar 

  • Steduto, P., Raes, D., Hsiao, T. C., & Fereres, E. (2009). AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 101, 426–437.

    Article  Google Scholar 

  • Stöckle, C., Donatelli, M., & Nelson, R. (2003). CropSyst, a cropping systems simulation model. European Journal of Agronomy, 18, 289–307.

    Article  Google Scholar 

  • Teruel, D. A., Baarbieri, V., & Ferraro, L. A. (1997). Sugarcane leaf area index modeling under different soil water conditions. Science Agriculture Piracicaba, 54, 39–44.

    Google Scholar 

  • Todorovic, M., Albrizio, R., Zivotic, L., Abi SAAB, M. T., Stöckle, C., & Steduto, P. (2009). Assesment of Aqua Crop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy Journal, 101, 508–521.

    Article  Google Scholar 

  • van Ittersum, M. K., Leffelaar, P. A., van Keulen, H., Kropff, M. J., Bastiaans, L., & Goudriaan, J. (2003). On approaches and applications of the Wageningen crop models. European Journal of Agronomy, 18, 201–234.

    Article  Google Scholar 

  • Wang, S. H. (2001). Einfluss von Blattstellung und Bestandesdichte auf Ertrag, Qualität, Lichtaufnahme und Blattflächenindex bei Silomaissorten verschiedenen Wuchstyps. Dissertation, Humbold Universität Berlin.

    Google Scholar 

  • Whistler, F. D., Acock, B., Baker, D. N., Fye, R. E., Hodges, H. F., Lambert, J. R., Lemmon, H. E., McKinion, J. M., & Reddy. V. R. (1986). Crop simulation models in agronomic systems. Advances in Agronomy, 40, 141–208.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Bauböck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bauböck, R. (2013). Modelling Site-Specific Biomass Potentials. In: Ruppert, H., Kappas, M., Ibendorf, J. (eds) Sustainable Bioenergy Production - An Integrated Approach. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6642-6_5

Download citation

Publish with us

Policies and ethics