Skip to main content

Changes in Variability Associated with Climate Change

  • Chapter
  • First Online:
Climate Science for Serving Society

Abstract

In this paper, we briefly discuss changes in large-scale oscillations such as the El Nino/Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the northern and southern annular modes (NAM and SAM), changes in the polar and tropical troposphere, and interactions between the stratosphere and troposphere in a changing climate. We consider both changes in variability as well as trends in the mean state. We conclude, that to fully understand how modes of variability will change in a changing climate, we need additional analysis of observations, both paleo and present day, and a solid fundamental understanding of mechanisms. Understanding of mechanisms necessarily requires use of models, ranging from simple to complex. Such models need to be fully coupled, between atmosphere and ocean, and need to include a fully resolved middle atmosphere as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambaum MHP, Hoskins BJ (2002) The NAO troposphere-stratosphere connection. J Clim 15:1969–1978

    Google Scholar 

  • Arblaster JM, Meehl GA (2006) Contributions of external forcings to southern annular mode trends. J Clim 19:2896–2905

    Google Scholar 

  • Arblaster JM, Meehl GA, Karoly DJ (2011) Future climate change in the southern hemisphere: competing effects of ozone and greenhouse gases. Geophys Res Lett 38, L02701. doi:10.1029/2010GL045384

    Google Scholar 

  • Archer CL, Caldeira K (2008) Historical trends in the jet streams. Geophys Res Lett 35:L08803. doi:10.1029/2008GL033614

    Google Scholar 

  • Baldwin M, Dameris M (Lead Authors) (2007) Climate-ozone connections, Chapter 5 in Scientific assessment of ozone depletion: 2006, Global Ozone Research and Monitoring Project–Report No. 50. World Meteorological Organization, Geneva, 572 pp

    Google Scholar 

  • Benedict JJ, Lee S, Feldstein SB (2004) Synoptic view of the North Atlantic oscillation. J Atmos Sci 61:121–144. doi:10.1175/1520-0469(2004)

    Google Scholar 

  • Branstator G, Selten FM (2009) Modes of variability and climate change. J Clim 22:2639–2658. doi:10.1175/2008JCLI2517.1

    Google Scholar 

  • Brown J, Collins M, Toniazzo T (2008) Modelling mid-Holocene tropical climate and ENSO variability: towards constraining predictions of future change with paleo-data. Clim Dyn 30:19–36

    Google Scholar 

  • Carsey FD (1980) Microwave observations of the Weddell Polynya. Mon Weather Rev 108:2032–2044

    Google Scholar 

  • Chen G, Held IM (2007) Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys Res Lett 34(21), L21805. doi:10.1029/2007GL031200

    Google Scholar 

  • Cheng X, Wallace JM (1993) Cluster analysis of the northern hemisphere wintertime 500 hPa height field: spatial patterns. J Atmos Sci 50:2674–2696

    Google Scholar 

  • Cobb KM, Charles CD, Cheng H, Edwards RL (2003) El Nino/Southern oscillation and tropical Pacific climate during the last millennium. Nature 424:271–276

    CAS  Google Scholar 

  • Corti S, Molteni F, Palmer TN (1999) Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398:799–802

    CAS  Google Scholar 

  • Davis SM, Rosenlof KH (2012) A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J Clim 25(4):1061–1078. doi:10.1175/JCLI-D-11-00127.1

    Google Scholar 

  • Deser C (2000) On the teleconnectivity of the “Arctic oscillation”. Geophys Res Lett 27:779–782

    Google Scholar 

  • Deser C, Phillips AS (2009) Atmospheric circulation trends, 1950–2000: the relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J Clim 22:396–413. doi:10.1175/2008JCLI2453.1

    Google Scholar 

  • Deser C, Walsh JE, Timlin MS (2000) Arctic sea ice variability in the context of recent atmospheric circulation trends. J Clim 13:617–633

    Google Scholar 

  • Deser C, Tomas RA, Peng S (2007) The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J Clim 4751–4767

    Google Scholar 

  • Deser C, Phillips AS, Bourdette V, Teng H (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38:527–546. doi:10.1007/s00382-010-0977-x

    Google Scholar 

  • DiNezio PN, Kirtman B, Clement AC, Lee S-K, Vecchi GA, Wittenberg A (2012) Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J Climate 25(21):7399–7420. doi:10.1175/JCLI-D-11-00494.1

    Google Scholar 

  • Eisenman I (2010) Geographic muting of changes in the Arctic sea ice cover. Geophys Res Lett 37, L16501

    Google Scholar 

  • Eisenman I, Wettlaufer JS (2009) Nonlinear threshold behavior during the loss of Arctic sea ice. Proc Natl Acad Sci USA 106(1):28–32

    CAS  Google Scholar 

  • Emile-Geay J, Cobb KM, Mann ME, Wittenberg A (2012) Estimating tropical Pacific SST variability over the last millennium; Part 2: Reconstructions and uncertainties. 10.1175/JCLI-D-11-00511.1

  • Eyring V et al (2010) Sensitivity of 21st century stratospheric ozone to greenhouse gas scenarios. Geophys Res Lett 37, L16807. doi:10.1029/2010GL044443

    Google Scholar 

  • Feldstein SB (2000) Is interannual zonal mean flow variability simply climate noise? J Clim 13:2356–2362

    Google Scholar 

  • Fogt RL, Bromwich DH (2006) Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the Southern Annular Mode. J Clim 19:979–997

    Google Scholar 

  • Fogt R, Bromwich D, Hines K (2011) Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim Dyn 36:1555–1576. doi:10.1007/s00382-010-0905-0

    Google Scholar 

  • Forster P, Thompson D (Lead Authors) (2011) Stratospheric changes and climate, Chapter 4 in Scientific assessment of ozone depletion: 2010, Global Ozone Research and Monitoring Project–Report no. 52. World Meteorological Organization, Geneva

    Google Scholar 

  • Franzke C, Lee S, Feldstein SB (2004) Is the North Atlantic oscillation a breaking wave? J Atmos Sci 61:145–160

    Google Scholar 

  • Frierson DMW (2006) Robust increases in midlatitude static stability in simulations of global warming. Geophys Res Lett 33:L24816. doi:10.1029/2006GL027504

    Google Scholar 

  • Frierson DMW, Lu J, Chen G (2007) Width of the Hadley cell in simple and comprehensive general circulation models. Geophys Res Lett 34(18), L18804. doi:10.1029/2007GL031115

    Google Scholar 

  • Funder S, Goosse H, Jepsen H, Kaas E, Kjær KH, Korsgaard NJ, Larsen NK, Linderson H, Lyså A, Möller P, Olsen J, Willerslev E (2011) A 10,000 year record of Arctic Ocean sea ice variability – view from the beach. Science 333:747–750

    CAS  Google Scholar 

  • Fyfe JC (2003) Extratropical southern hemisphere cyclones: harbingers of climate change? J Clim 16:2802–2805

    Google Scholar 

  • Galeotti S, von der Heydt A, Huber M, Bice D, Dijkstra HA, Jilbert T, Lanci L, Reichart G (2010) Evidence for active ENSO in the late Miocene greenhouse climate. Geology 1017

    Google Scholar 

  • Gillett NP, Thompson DWJ (2003) Simulation of recent Southern Hemisphere climate change. Science 302:273–275

    CAS  Google Scholar 

  • Gillett NP, Stott PA (2009) Attribution of anthropogenic influence on seasonal sea level pressure. Geophys Res Lett 36:L23709. doi:10.1029/2009GL041269

    Google Scholar 

  • Gillett NP, Zwiers FW, Weaver AJ, Stott PA (2003) Detection of human influence on sea level pressure. Nature 422:292–294

    CAS  Google Scholar 

  • Gillett NP, Allan RJ, Ansell TJ (2005) Detection of external influence on sea level pressure with a multi-model ensemble. Geophys Res Lett 32(19), L19714. doi:10.1029/2005GL023640

    Google Scholar 

  • Goosse H, Arzel O, Bitz CM, de Montety A, Vancoppenolle M (2009) Increased variability of the Arctic summer ice extent in a warmer climate. Geophys Res Lett 36, L23702. doi:10.1029/2009GL040546

    Google Scholar 

  • Guilyardi E, Bellenger H, Collins M, Ferrett S, Cai W, Wittenberg A (2012) A first look at ENSO in CMIP5 Submitted to CLIVAR Exchanges, 58, 17(1):29–32

    Google Scholar 

  • Hall A, Visbeck M (2002) Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J Clim 15:3043–3057

    Google Scholar 

  • Hannachi A (2007) Tropospheric planetary wave dynamics and mixture modeling: two preferred regimes and a regime shift. J Atmos Sci 64:3521–3541

    Google Scholar 

  • Holland MM, Bitz CM, Tremblay B (2006) Future abrupt reductions in the summer Arctic sea ice. Geophys Res Lett 33, L23503. doi:10.1029/2006GL028024

    Google Scholar 

  • Holland MM, Bitz CM, Tremblay LB, Bailey DA (2008) The role of natural versus forced change in future rapid summer Arctic ice loss, in Arctic sea ice decline: observations, projections, mechanisms, and implications. Geophys Monogr Ser 180:133–150

    Google Scholar 

  • Honda M, Inoue J, Yamane S (2009) Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys Res Lett 36, L08707. doi:10.1029/2008GL037079

    Google Scholar 

  • Hu Y, Fu Q (2007) Observed poleward expansion of the Hadley circulation since 1979. Atmos Chem Phys 7(19):5229–5236

    CAS  Google Scholar 

  • Huber M, Caballero R (2003) Eocene El Nino: evidence for robust tropical dynamics in the “hothouse”. Science 299:877–881

    CAS  Google Scholar 

  • Hudson RD, Andrade MF, Follette MB, Frolov AD (2006) The total ozone field separated into meteorological regimes – part II: Northern Hemisphere mid-latitude total ozone trends. Atmos Chem Phys 6:5183–5191

    CAS  Google Scholar 

  • Hurrell JW, Deser C (2009) North Atlantic climate variability: the role of the North Atlantic oscillation. J Mar Syst 78(1):28–41. doi:10.1016/j.jmarsys.2008.11.026

    Google Scholar 

  • Hurrell JW, Kushnir Y, Visbeck M, Ottersen G (2003) An overview of the North Atlantic oscillation. The North Atlantic oscillation: climate significance and environmental impact. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) Geophysical Monograph Series 134, pp 1–35

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, 996 pp

    Google Scholar 

  • Johanson CM, Fu Q (2009) Hadley cell widening: model simulations versus observations. J Clim 22:2713–2725. doi:10.1175/2008JCLI2620.1

    Google Scholar 

  • Kang SM, Polvani LM (2011) The interannual relationship between the latitude of the eddy-driven jet and the edge of the Hadley cell. http://dx.doi.org/10.1175/2010JCLI4077.1. 24:563–568. doi:10.1175/2010JCLI4077.1

  • Kang S, Polvani LM, Fyfe JC, Sigmond M (2011) Impact of polar ozone depletion on subtropical precipitation. Science 332:951–954

    CAS  Google Scholar 

  • Kidston J, Frierson DMW, Renwick JA, Vallis GK (2010) Observations, simulations, and dynamics of jet stream variability and annular modes. J Clim 23:6186–6199

    Google Scholar 

  • Kimoto M, Ghil M (1993) Multiple flow regimes in the Northern Hemisphere winter. Part II: sectorial regimes and preferred transitions. J Atmos Sci 50:2645–2673

    Google Scholar 

  • Kirtman BP, Schopf PS (1998) Decadal variability in ENSO predictability and prediction. J Clim 11:2804–2822

    Google Scholar 

  • Koutavas A, Joanidis S (2009) El Nino during the last glacial maximum. G Eochimica et Cosmochimica Acta 73(13):A690–A690

    Google Scholar 

  • Kushner PJ, Held IM, Delworth TL (2001) Southern-hemisphere atmospheric circulation response to global warming. J Clim 14:2238–2249

    Google Scholar 

  • L’Heureux ML, Thompson DWJ (2006) Observed relationships between the El-Nino/Southern oscillation and the extratropical zonal-mean circulation. J Clim 19:276–287

    Google Scholar 

  • Lau N-C, Leetmaa A, Nath MJ (2008) Interactions between the responses of North American climate to El Nino-La Nina and to the secular warming trend in the Indian-Western Pacific Oceans. J Clim 21(3):476–494. doi:10.1175/2007JCLI1899.1

    Google Scholar 

  • Lefebvre W, Goosse H, Timmermann R, Fichefet T (2004) Influence of the Southern Annular Mode on the sea-ice-ocean system. J Geophys Res 109, C090005. doi:10.1029/2004JC002403

    Google Scholar 

  • Li F, Newman PA, Stolarski RS (2010) Relationships between the Brewer-Dobson circulation and the southern annular mode during austral summer in coupled chemistry-climate model simulations. J Geophys Res 115, D15106. doi:10.1029/2009JD012876

    Google Scholar 

  • Limpasuvan V, Hartmann DL (2000) Wave-maintained annular modes of climate variability. J Clim 13:4414–4429

    Google Scholar 

  • Liu Z, Vavrus S, He F, Wen N, Zhong Y (2005) Rethinking tropical ocean response to global warming: the enhanced equatorial warming. J Clim 18(22):4684–4700. doi:10.1175/JCLI3579.1

    Google Scholar 

  • Lorenz DJ, Deweaver ET (2007) Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J Geophys Res 112, D10119. doi:10.1029/2006JD008087

    Google Scholar 

  • Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34, L06805. doi:10.1029/2006GL028443

    Google Scholar 

  • Lu J, Deser C, Reichler T (2009) Cause of the widening of the tropical belt since 1958. Geophys Res Lett 36, L03803. doi:10.1029/2008GL036076

    Google Scholar 

  • Lu J, Chen G, Frierson D (2010) The position of the midlatitude storm track and eddy-driven westerlies in aquaplanet AGCMs. J Atmos Sci 17:3984–4000

    Google Scholar 

  • Marshall GJ (2003) Trends in the Southern Annular Mode from observations and reanalyses. J Clim 16:4134–4143

    Google Scholar 

  • McCabe GJ, Clark MP, Serreze MC (2001) Trends in Northern Hemisphere surface cyclone frequency and intensity. J Clim 14:2763–2768

    Google Scholar 

  • McLandress C, Shepherd TG, Scinocca JF, Plummer DA, Sigmond M, Jonsson AI, Reader MC (2011) Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J Clim 24:1850–1868. doi:10.1175/2010JCLI3958.1

    Google Scholar 

  • Mitas CM, Clement A (2005) Has the Hadley cell been strengthening in recent decades? Geophys Res Lett 32:L03809. doi:10.1029/2004GL021765

    Google Scholar 

  • Newman M, Shin S-I, Alexander MA (2011) Natural variation in ENSO flavors. Geophys Res Lett 38:L14705. doi:10.1029/2011GL047658

    Google Scholar 

  • Notz D (2009) The future of ice sheets and sea ice: between reversible retreat and unstoppable loss. Proc Natl Acad Sci 106(49):20,590–20,595

    Google Scholar 

  • Overland JE, Wang M (2005) The third Arctic climate pattern: 1930s and early 2000s. Geophys Res Lett 32, L23808. doi:10.1029/2005GL024254

    Google Scholar 

  • Overland JE, Wang M (2010) Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus 62A:1–9

    Google Scholar 

  • Palmer TN (1999) A nonlinear dynamical perspective on climate change. J Clim 12:575–591

    Google Scholar 

  • Perlwitz J, Pawson S, Fogt RL, Nielsen JE, Neff WD (2008) Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys Res Lett 35, L08714. doi:10.1029/2008GL033317

    Google Scholar 

  • Petoukhov V, Semenov VA (2010) A link between reduced Barents‐Kara sea ice and cold winter extremes over northern continents. J Geophys Res 115, D21111. doi:10.1029/2009JD013568

    Google Scholar 

  • Pezza AB, Rashid HA, Simmonds I (2011) Climate links and recent extremes in Antarctic sea ice, high-latitude cyclones, Southern Annular Mode and ENSO. Clim Dyn. doi:10.1007/s00382-011-1044-y

    Google Scholar 

  • Polvani LM, Kushner PJ (2002) Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys Res Lett 29:1114. doi:10.1029/2001GL014284

    Google Scholar 

  • Polvani LM, Waugh DW, Correa GJP, Son S-W (2011a) Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J Clim 24(3):795–812. doi:10.1175/2010JCLI3772.1

    Google Scholar 

  • Polvani LM, Previdi M, Deser C (2011b) Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophys Res Lett 38(4):L04707. doi:10.1029/2011GL046712

    Google Scholar 

  • Polyak L, Alley RB, Andrews JT, Brigham-Gretted J, Cronine TM, Darbyf DA, Dykeg AS, Fitzpatrich JJ, Funderi S, Holland M, Jennings AE, Millerc GH, O’Regan M, Savelle J, Serreze M, St K, John JWCW, Wolff E (2010) History of sea ice in the Arctic. Q Sci Rev 29:1757–1778

    Google Scholar 

  • Polyakov IV, Timokhov LA, Alexeev VA, Bacon S, Dmitrenko IA, Fortier L, Frolov IE, Gascard J-C, Hansen E, Ivanov VV, Laxon S, Mauritzen C, Perovich D, Shimada K, Simmons HL, Sokolov VT, Steele M, Toole J (2010) Arctic Ocean warming contributes to reduced polar ice cap. J Phys Ocean 40:2743–2756

    Google Scholar 

  • Randel WJ, Wu F, Vömel H, Nedoluha GE, Forster P (2006) Decreases in stratospheric water vapor after 2001: links to changes in the tropical tropopause and the brewer-Dobson circulation. J Geophys Res 111, D12312. doi:10.1029/2005JD006744

    Google Scholar 

  • Raphael MN, Hobbs W, Wainer I (2011) The effect of Antarctic sea ice on the Southern Hemisphere atmosphere during the southern summer. Clim Dyn 36(7–8):1403–1417

    Google Scholar 

  • Rigor IG, Wallace JM, Colony RL (2002) Response of sea ice to the Arctic oscillation. J Clim 15:2648–2663

    Google Scholar 

  • Rivière G (2011) A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. J Atmos Sci 68:1253–1272

    Google Scholar 

  • Rivière G, Orlanski I (2007) Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic oscillation. J Atmos Sci 64:241–266. doi:10.1175/JAS3850.1

    Google Scholar 

  • Roberts WGH, Battisti DS (2011) A new tool for evaluating the physics of coupled atmosphere–ocean variability in nature and in general circulation models. Clim Dyn 36:907–923. doi:10.1007/s00382-010-0762-x

    Google Scholar 

  • Scaife A et al (2012) Climate change projections and stratosphere–troposphere interaction. Clim Dyn. doi:10.1007/s00382-011-1080-7

    Google Scholar 

  • Schneider DP, Deser C, Okumura Y (2011) An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Clim Dyn 38:323–347. doi:10.1007/s00382-010-0985-x

    Google Scholar 

  • Scroxton N, Bonham SG, Rickaby REM, Lawrence SHF, Hermoso M, Haywood AM (2011) Persistent El Niño–Southern oscillation variation during the Pliocene Epoch. Paleoceanography 26, PA2215. doi:10.1029/2010PA002097

    Google Scholar 

  • Seager R, Harnik N, Robinson WA, Kushnir Y, Ting MF, Huang HP, Velez (Nakamura) J (2005) Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Q J R Meteorol Soc 131(608):1501–1527

    Google Scholar 

  • Seager R, Naik N, Ting M, Cane MA, Harnik N, Kushnir Y (2010) Adjustment of the atmospheric circulation to tropical pacific SST anomalies: variability of transient eddy propagation in the Pacific-North America sector. Q J R Meteorol Soc 136:277–296. doi:10.1002/qj.588

    Google Scholar 

  • Seidel DJ, Randel WJ (2007) Recent widening of the tropical belt: evidence from tropopause observations. J Geophys Res 112(D20):D20113. doi:10.1029/2007JD008861

    Google Scholar 

  • Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24. doi:10.1038/ngeo.2007.38

    CAS  Google Scholar 

  • Sen Gupta A, England MH (2007) Coupled ocean–atmosphere feedback in the Southern Annular Mode. J Clim 20:3677–3692

    Google Scholar 

  • Sigmond M, Fyfe JC (2010) Has the ozone hole contributed to increased Antarctic sea ice extent? Geophys Res Lett 37, L18502. doi:10.1029/2010GL044301

    Google Scholar 

  • Simpson IR, Blackburn M, Haigh JD (2009) The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J Atmos Sci 66:1347–1365. doi:10.1175/2008JAS2758.1

    Google Scholar 

  • Solomon S, Rosenlof KH, Portmann R, Daniel J, Davis S, Sanford T, Plattner G-K (2010) Contributions of stratospheric water vapor changes to decadal variations in the rate of global warming. Science 327:1219–1223

    CAS  Google Scholar 

  • Son S-W, Tandon NF, Polvani LM, Waugh DW (2009) Ozone hole and Southern Hemisphere climate change. Geophys Res Lett 36, L15705. doi:10.1029/2009GL038671

    Google Scholar 

  • Son S-W et al (2010) Impact of stratospheric ozone on Southern Hemisphere circulation change: a multimodel assessment. J Geophys Res 115:D00M07. doi:10.1029/2010JD014271

    Google Scholar 

  • Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern oscillation and Southern Annual Mode variability. J Geophys Res 113:C03S90. doi:10;1029/2007JC004269

    Google Scholar 

  • Stephenson DB, Pavan V, Bojariu R (2000) Is the North Atlantic oscillation a random walk? Int J Climatol 20:1–18. doi:10.1002/(SICI)1097-0088(200001)20:1<1::AID-JOC456>3.0.CO;2-P

    Google Scholar 

  • Stevenson S, Fox-Kemper B, Jochum M, Neale R, Deser C, Meehl G (2012) Will there be a significant change to El Niño in the twenty-first century? J Climate 25:2129–2145. doi:10.1175/JCLI-D-11-00252.1

    Google Scholar 

  • Strong C, Davis RE (2007) Winter jet stream trends over the Northern Hemisphere. Q J R Meteorol Soc 133(629):2109–2115. doi:10.1002/qj.171

    Google Scholar 

  • Swart NC, Fyfe JC (2012) Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys Res Lett 39:L16711. doi:10.1029/2012GL052810

    Google Scholar 

  • Tandon NF, Polvani LM, Davis SM (2011) The response of the tropospheric circulation to water vapor-like forcings in the stratosphere. J Climate, 110701092225006, doi:10.1175/JCLI-D-11-00069.1

  • Terray L, Demory ME, Déqué M, de Coetlogon G, Maisonnave E (2004) Simulation of late-twenty-first-century changes in wintertime atmospheric circulation over Europe due to anthropogenic causes. J Climate 17:4630–4635. doi: http://dx.doi.org/10.1175/JCLI-3244.1

    Google Scholar 

  • Thompson DWJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296:895–899

    CAS  Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016

    Google Scholar 

  • Thompson DWJ, Wallace JM, Hegerl GC (2000) Annular modes in the extratropical circulation. Part II: trends. J Clim 13:1018–1036

    Google Scholar 

  • Trenberth KE, Hoar TJ (1996) The 1990–1995 El Niño-Southern oscillation event: longest on record. Geophys Res Lett 23:57–60

    Google Scholar 

  • Trenberth KE, Hoar TJ (1997) El Niño and climate change. Geophys Res Lett 24:3057–3060

    Google Scholar 

  • Tudhope AW, Chilcott CP, McCulloch MT, Cook ER, Chappell J, Ellam RM, Lea DW, Lough JM, Shimmield GB (2001) Variability in the El Nino-Southern oscillation through a glacial-interglacial cycle. Science 291:1511–1517

    CAS  Google Scholar 

  • Vautard R (1990) Multiple weather regimes over the North Atlantic analysis of precursors and successors. Mon Weather Rev 118(10):2056–2081

    Google Scholar 

  • Von der Heydt AS, Nnafie A, Dijkstra HA (2011) Cold tongue/Warm pool and ENSO dynamics in the Pliocene. Clim Past Discuss 7:997–1027. doi:10.5194/cpd-7-997-2011

    Google Scholar 

  • Watanabe T et al (2011) Permanent El Niño during the Pliocene warm period not supported by coral evidence. Nature 471:209–211. doi:10.1038/nature09777

    CAS  Google Scholar 

  • Waugh DW et al (2009) Impact of climate change on ozone recovery. Geophys Res Lett 36:L03805. doi:10.1029/2008GL036223

    Google Scholar 

  • Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations? Geophys Res Lett 36:L12702. doi:10.1029/2009GL038710

    Google Scholar 

  • Woollings T (2008) The vertical structure of anthropogenic zonal-mean atmospheric circulation change. Geophys Res Lett 35:L19702. doi:10.1029/2008GL034883

    Google Scholar 

  • Woollings T, Blackburn M (2012) The North Atlantic jet stream under climate change, and its relation to the NAO and EA patterns. J Clim 25(3):886–902

    Google Scholar 

  • Yeh SW et al (2009) El Nino in a changing climate. Nature 461:511–514. doi:10.1038/nature08316

    CAS  Google Scholar 

  • Yin J (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32(18):L18701. doi:10.1029/2005GL023684

    Google Scholar 

  • Zheng W, Braconnot P, Guilyardi E, Merkel U, Yu Y (2008) ENSO at 6ka and 21ka from ocean–atmosphere coupled model simulations. Clim Dyn 30(7–8):745–762

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen H. Rosenlof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rosenlof, K.H., Terray, L., Deser, C., Clement, A., Goosse, H., Davis, S. (2013). Changes in Variability Associated with Climate Change. In: Asrar, G., Hurrell, J. (eds) Climate Science for Serving Society. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6692-1_10

Download citation

Publish with us

Policies and ethics