Skip to main content

A Historical Overview and Concepts of Mesenchymal Stem Cells

  • Chapter
  • First Online:
Essentials of Mesenchymal Stem Cell Biology and Its Clinical Translation

Abstract

Mesenchymal stem cells have generated great interest among researchers and physicians due to their unique biological characteristics and potential clinical applications. Here, we first give a brief introduction to mesenchymal stem cells, from their discovery to their definition, sources and types. During embryonic development, MSCs arise from two major sources: neural crest and mesoderm. We discuss these two developmental origins. Additionally, we propose for the first time the concept of a hierarchical system of MSCs and draw the conclusion that post-embryonic subtotipotent stem cells are cells that are leftover from embryonic development and are at the top of the hierarchy, serving as a source of MSCs. Then, we describe various concepts related to MSCs, such as their plasticity, immunomodulatory functions, homing and secretion of bioactive molecules. These concepts constitute an important part of the biological properties of MSCs, and a thorough understanding of these concepts can help researchers gain better insight into MSCs. Finally, we provide an overview of the recent clinical findings related to MSC therapeutic effects. MSC-based clinical trials have been conducted for at least 12 types of pathological conditions, with many completed trials demonstrating their safety and efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230–47.

    Article  PubMed  CAS  Google Scholar 

  2. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974;17:331–40.

    Article  PubMed  CAS  Google Scholar 

  3. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9:641–50.

    Article  PubMed  CAS  Google Scholar 

  4. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  PubMed  CAS  Google Scholar 

  5. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA. 1999;96:10711–6.

    Article  PubMed  CAS  Google Scholar 

  6. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  PubMed  CAS  Google Scholar 

  7. Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells. 2010;28:585–96.

    PubMed  CAS  Google Scholar 

  8. Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair – current views. Stem Cells. 2007;25:2896–902.

    Article  PubMed  Google Scholar 

  9. Morikawa S, Mabuchi Y, Niibe K, Suzuki S, Nagoshi N, et al. Development of mesenchymal stem cells partially originate from the neural crest. Biochem Biophys Res Commun. 2009;379:1114–9.

    Article  PubMed  CAS  Google Scholar 

  10. Takashima Y, Era T, Nakao K, Kondo S, Kasuga M, et al. Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell. 2007;129:1377–88.

    Article  PubMed  CAS  Google Scholar 

  11. Dennis JE, Charbord P. Origin and differentiation of human and murine stroma. Stem Cells. 2002;20:205–14.

    Article  PubMed  CAS  Google Scholar 

  12. Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med. 2010;16:1400–6.

    Article  PubMed  CAS  Google Scholar 

  13. Slukvin II, Vodyanik M. Endothelial origin of mesenchymal stem cells. Cell Cycle. 2011;10:1370–3.

    Article  PubMed  CAS  Google Scholar 

  14. Fang B, Shi M, Liao L, Yang S, Liu Y, et al. Multiorgan engraftment and multilineage differentiation by human fetal bone marrow Flk1+/CD31-/CD34- Progenitors. J Hematother Stem Cell Res. 2003;12:603–13.

    Article  PubMed  CAS  Google Scholar 

  15. Fang B, Liao L, Shi M, Yang S, Zhao RC. Multipotency of Flk1CD34 progenitors derived from human fetal bone marrow. J Lab Clin Med. 2004;143:230–40.

    Article  PubMed  CAS  Google Scholar 

  16. Macias MI, Grande J, Moreno A, Dominguez I, Bornstein R, et al. Isolation and characterization of true mesenchymal stem cells derived from human term decidua capable of multilineage differentiation into all 3 embryonic layer. Am J Obstet Gynecol. 2010;203:495.e9–23.

    Article  Google Scholar 

  17. Anzalone R, Lo Iacono M, Loria T, Di Stefano A, Giannuzzi P, et al. Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Rev. 2011;7:342–63.

    Article  PubMed  Google Scholar 

  18. De Coppi P, Bartsch Jr G, Siddiqui MM, Xu T, Santos CC, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25:100–6.

    Article  PubMed  Google Scholar 

  19. Battula VL, Bareiss PM, Treml S, Conrad S, Albert I, et al. Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation. 2007;75:279–91.

    Article  PubMed  CAS  Google Scholar 

  20. Miki T, Lehmann T, Cai H, Stolz DB, Strom SC. Stem cell characteristics of amniotic epithelial cells. Stem Cells. 2005;23:1549–59.

    Article  PubMed  CAS  Google Scholar 

  21. Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med. 2004;200:123–35.

    Article  PubMed  Google Scholar 

  22. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418:41–9.

    Article  PubMed  CAS  Google Scholar 

  23. Spees JL, Olson SD, Ylostalo J, Lynch PJ, Smith J, et al. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci USA. 2003;100:2397–402.

    Article  PubMed  CAS  Google Scholar 

  24. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature. 2003;425:968–73.

    Article  PubMed  CAS  Google Scholar 

  25. Charbord P. Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther. 2010;21:1045–56.

    Article  PubMed  CAS  Google Scholar 

  26. Guo M, Sun Z, Sun QY, Han Q, Yu CL, et al. A modified haploidentical nonmyeloablative transplantation without T cell depletion for high-risk acute leukemia: successful engraftment and mild GVHD. Biol Blood Marrow Transplant. 2009;15:930–7.

    Article  PubMed  Google Scholar 

  27. Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH. Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes. 2008;57:1759–67.

    Article  PubMed  CAS  Google Scholar 

  28. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30:42–8.

    Article  PubMed  Google Scholar 

  29. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 2003;57:11–20.

    Article  PubMed  Google Scholar 

  30. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–22.

    Article  PubMed  CAS  Google Scholar 

  31. Shi D, Liao L, Zhang B, Liu R, Dou X, et al. Human adipose tissue-derived mesenchymal stem cells facilitate the immunosuppressive effect of cyclosporin A on T lymphocytes through Jagged-1-mediated inhibition of NF-kappaB signaling. Exp Hematol. 2011;39(214–224):e211.

    Google Scholar 

  32. Zhang W, Ge W, Li C, You S, Liao L, et al. Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev. 2004;13:263–71.

    Article  PubMed  CAS  Google Scholar 

  33. Chen L, Zhang W, Yue H, Han Q, Chen B, et al. Effects of human mesenchymal stem cells on the differentiation of dendritic cells from CD34+ cells. Stem Cells Dev. 2007;16:719–31.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang B, Liu R, Shi D, Liu X, Chen Y, et al. Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population. Blood. 2009;113:46–57.

    Article  PubMed  CAS  Google Scholar 

  35. Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4:206–16.

    Article  PubMed  CAS  Google Scholar 

  36. Yagi H, Soto-Gutierrez A, Parekkadan B, Kitagawa Y, Tompkins RG, et al. Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transplant. 2010;19:667–79.

    Article  PubMed  Google Scholar 

  37. Kraitchman DL, Tatsumi M, Gilson WD, Ishimori T, Kedziorek D, et al. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation. 2005;112:1451–61.

    Article  PubMed  Google Scholar 

  38. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA. 2003;100:8407–11.

    Article  PubMed  CAS  Google Scholar 

  39. Bouffi C, Bony C, Courties G, Jorgensen C, Noel D. IL-6-dependent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis. PLoS One. 2010;5:e14247.

    Article  PubMed  Google Scholar 

  40. Foraker JE, Oh JY, Ylostalo JH, Lee RH, Watanabe J, et al. Cross-talk between human mesenchymal stem/progenitor cells (MSCs) and rat hippocampal slices in LPS-stimulated cocultures: the MSCs are activated to secrete prostaglandin E2. J Neurochem. 2011;119:1052–63.

    Article  PubMed  CAS  Google Scholar 

  41. Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15:42–9.

    Article  PubMed  CAS  Google Scholar 

  42. Gupta N, Su X, Popov B, Lee JW, Serikov V, et al. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol. 2007;179:1855–63.

    PubMed  CAS  Google Scholar 

  43. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–43.

    Article  PubMed  Google Scholar 

  44. Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA. 2007;104:11002–7.

    Article  PubMed  CAS  Google Scholar 

  45. Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4 + CD25highFOXP3+ regulatory T cells. Stem Cells. 2008;26:212–22.

    Article  PubMed  CAS  Google Scholar 

  46. Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells. 2010;28:2229–38.

    Article  PubMed  CAS  Google Scholar 

  47. Fang X, Neyrinck AP, Matthay MA, Lee JW. Allogeneic human mesenchymal stem cells restore epithelial protein permeability in cultured human alveolar type II cells by secretion of angiopoietin-1. J Biol Chem. 2010;285:26211–22.

    Article  PubMed  CAS  Google Scholar 

  48. Kim Y, Kim H, Cho H, Bae Y, Suh K, et al. Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem. 2007;20:867–76.

    Article  PubMed  CAS  Google Scholar 

  49. Lee JW, Fang X, Gupta N, Serikov V, Matthay MA. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci USA. 2009;106:16357–62.

    Article  PubMed  CAS  Google Scholar 

  50. Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 2004;109:1543–9.

    Article  PubMed  CAS  Google Scholar 

  51. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004;94:678–85.

    Article  PubMed  CAS  Google Scholar 

  52. van Poll D, Parekkadan B, Cho CH, Berthiaume F, Nahmias Y, et al. Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology. 2008;47:1634–43.

    Article  PubMed  Google Scholar 

  53. Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med. 2000;6:1282–6.

    Article  PubMed  CAS  Google Scholar 

  54. Parekkadan B, van Poll D, Suganuma K, Carter EA, Berthiaume F, et al. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One. 2007;2:e941.

    Article  PubMed  Google Scholar 

  55. Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant. 1995;16:557–64.

    PubMed  CAS  Google Scholar 

  56. Otto WR, Wright NA. Mesenchymal stem cells: from experiment to clinic. Fibrogenesis Tissue Repair. 2011;4:20.

    Article  PubMed  CAS  Google Scholar 

  57. Yang Z, Bian C, Zhou H, Huang S, Wang S, et al. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells Dev. 2011;20:259–67.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Chunhua Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wang, S., Zhao, R.C. (2013). A Historical Overview and Concepts of Mesenchymal Stem Cells. In: Zhao, R. (eds) Essentials of Mesenchymal Stem Cell Biology and Its Clinical Translation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6716-4_1

Download citation

Publish with us

Policies and ethics