Skip to main content

Examining Impact of Particle Deagglomeration Techniques on Microstructure and Properties of Oxide Materials Through Nanoindentation

  • Chapter
  • First Online:
Nanomechanical Analysis of High Performance Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 203))

  • 1841 Accesses

Abstract

Microstructure and properties of sintered components produced from nanoparticulate materials are critically dependent on degree of deagglomeration of particulates prior to their consolidation. While all nanoparticulate materials have an inherent tendency to agglomerate owing to attractive Van der Waals forces the impact of agglomeration on sintering behavior/sintered density of powder compacts and associated properties is significant. Although a lot of work has been carried out on developing approaches to deagglomeration of nanopowders it is a challenging task to evaluate the extent of deagglomeration by examining powder compacts. Microscopy of powders (TEM) or of compacts (SEM) is unable to provide any clear distinction between powders with different degrees of particulate agglomeration/deagglomeration. The present chapter cites two case studies from processing of dye sensitized solar cells and synthesis of nanocrystalline yttria stabilized zirconia (YSZ) powders respectively to illustrate that nanoindentation can be an effective way of characterizing the impact of deagglomeration approaches and the consequent deagglomeration extent on powders and compact characteristics. Electrical characterization of the titania based dye-sensitized solar cells, characteristics of green and sintered compacts prepared from synthesized nano YSZ powders are supported by observations from nanoindentation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berginc M, Opara KraÅ¡ovec U, Jankovec M, TopiÄ M (2007) The effect of temperature on the performance of dye-sensitized solar cells based on a propyl-methyl-imidazolium iodide electrolyte. Sol Energy Mater Sol Cells 91:821–828

    Article  Google Scholar 

  • Chou TP, Zhang Q, Russo B, Fryxell GE, Cao G (2007) Titania particle size effect on the overall performance of dye-sensitized solar cells. J Phys Chem C 6296–6302

    Google Scholar 

  • Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L (2006) Dye-sensitized solar cells with conversion efficiency of 11.1%. J App Phys 45 638

    Google Scholar 

  • Durr M, Schmid A, Obermaier M, Rosselli S, Yasuda A, Nelles G (2005) Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers. Nat Mater 4:607–611

    Article  Google Scholar 

  • Furlani E, Aneggi E, Maschio S (2009) Effects of milling on co-precipitated 3Y-PSZ powders. J Euro Ceram Soc 29:1641–1645

    Article  Google Scholar 

  • Ingli Ma TK, Akiyama M, Inoue K, Tsunematsu S, Ken Yao HN, Abe E (2003) Preparation and properties of nanostructured TiO2 electrode by a polymer organic-medium screen-printing technique. Electrochem Commun 5, 369–372

    Google Scholar 

  • Ito S, Murakami TN, Comte P, Liska P, Gratzel C, Nazeeruddin MK, Gratzel M (2008) Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10 %. Thin Solid Films 516:4613–4619

    Article  Google Scholar 

  • Kaliszewski MS, Heuer AH (1990) Alcohol interaction with zirconia powders. J Am Ceram Soc 73(6) 1504–1509

    Google Scholar 

  • Lauci M (1997) Powders agglomeration grade in the ZrO2–Y2O3 coprecipitation process. Key Eng Mater 132–136:89–92

    Article  Google Scholar 

  • Mercera PDL, Van Omen JG, Doesburg EBM, Burggraaf AJ, Ross JRH (1992) Influence of ethanol washing of the hydrous precursor on the textural and structural properties of zirconia. J Mater Sci 27:4890–4898

    Article  Google Scholar 

  • O′Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  • Patil SB, Bhargava P (2012) Characterization of agglomeration state in 3YSZ nanocrystalline powders through pressure-displacement curves and nanoindentation of green compacts. Powder Technol 228:272–276

    Article  Google Scholar 

  • Patil SB, Jena A, Bhargava P (2012) Influence of ethanol amount during washing on deagglomeration of coprecipitated calcined nanocrystalline powders. Int J Appl Ceram Technol. doi:10.1111/j.1744-7402.2012.02813.x

    Google Scholar 

  • Pichot FO, Pitts JR, Gregg BA (2000) Low-temperature sintering of TiO2 colloids: application to flexible dye-sensitized solar cells. Langmuir 16:5626–5630

    Article  Google Scholar 

  • Raichman Y, Kazakevich M, Rabkin E, Tsur Y (2006) Inter-nanoparticle bonds in agglomerates studied by nanoindentation. Adv Mater 18:2028–2030

    Article  Google Scholar 

  • Readey MJ, Lee RR, Halloran JW, Heuer AU (1990) Processing and sintering of ultrafine MgO–ZrO2 and [MgO–Y2O3]-ZrO2powders. J Am Ceram Soc 73(6):1499–1503

    Article  Google Scholar 

  • Saito Y, Kambe S, Kitamura T, Wada Y, Yanagida S (2004) Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells. Sol Energy Mater Sol Cells 83:1–13

    Article  Google Scholar 

  • Srdic V, Radonjic L (1997) Synthesis and sintering behavior of Nanocrytalline ZrO2-3 mol% Y2O3 powders. Key Eng Mater 132–136:45–48

    Article  Google Scholar 

  • Shi JL, Gao J-H, Xiang Z, Yen TS (1991) Sintering behavior of fully agglomerated zirconia compacts. J Am Ceram Soc 74(5):994–997

    Article  Google Scholar 

  • Shi JL, Lin ZX, Qian WJ, Yen TS (1994) Characterization of agglomeration strength of coprecipitated superfine zirconia powders. J Euro Ceram Soc 13:265–271

    Article  Google Scholar 

  • Sagel-Ransijn CD, Winnubst AJA, Burggraaf AJ, Verwij H (1996) The influence of crystallization and washing medium on the characterization of nanocrytalline Y-TZP. J Euro Ceram Soc 16:759–766

    Article  Google Scholar 

  • Toyoda T, Sano T, Nakajima J, Doi S, Fukumoto S, Ito A, Tohyama T, Yoshida M, Kanagawa T, Motohiro T, Shiga T, Higuchi K, Tanaka H, Takeda Y, Fukano T, Katoh N, Takeichi A, Takechi K, Shiozawa M (2004) Outdoor performance of large scale DSC modules. J Photochem Photobiol A 164 203–207

    Google Scholar 

  • Wang S, Zhai Y (2006) Coprecipitation syntheis of MgO-doped ZrO2 nano powder. J Am Ceram Soc 89(11):3577–3581

    Article  Google Scholar 

  • Wang S, Li X, Zhai Y, Wang K (2006) Preparation of homodispersed nano zirconia. Powder Technol 168:53–58

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag Bhargava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Patil, S.B., Jena, A.K., Bhargava, P. (2014). Examining Impact of Particle Deagglomeration Techniques on Microstructure and Properties of Oxide Materials Through Nanoindentation. In: Tiwari, A. (eds) Nanomechanical Analysis of High Performance Materials. Solid Mechanics and Its Applications, vol 203. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6919-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6919-9_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6918-2

  • Online ISBN: 978-94-007-6919-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics