Skip to main content

Backscatter Quantification for the Detection of Metastatic Regions in Human Lymph Nodes

  • Chapter
  • First Online:
Quantitative Ultrasound in Soft Tissues

Abstract

Quantitative ultrasound (QUS) methods using high-frequency ultrasound offer a means of investigating biological tissue at the microscopic level. This chapter describes high-frequency, three-dimensional (3D) QUS methods to characterize freshly dissected lymph nodes of cancer patients. 3D ultrasound radio-frequency data were acquired from lymph nodes using a 25.6-MHz center-frequency transducer. Each node was inked prior to tissue fixation to recover orientation after sectioning for 3D histological evaluation. Backscattered echo signals were processed using 3D cylindrical regions-of-interest to yield four QUS estimates associated with tissue microstructure (i.e., effective scatterer size, acoustic concentration, spectral intercept, and spectral slope). QUS estimates were computed following established methods using two scattering models. Then, the four QUS estimates were combined using linear-discriminant analysis to increase classification performance. Finally, the discriminant scores were used to compute a posteriori cancer probability. In this study, more than 400 lymph nodes acquired from more than 250 patients diagnosed with colon, breast, or gastric cancer were processed. Results indicated that metastatic and cancer-free lymph nodes of colon- and gastric-cancer patients could be well classified using these methods and that metastatic regions could potentially be detected and used to guide pathologists towards suspicious regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assentoft JE, Gregersenb H, O’Brien WD Jr (2001) Propagation speed of sound assessment in the layers of the guinea-pig esophagus in vitro by means of acoustic microscopy. Ultrasonics 39:263–268

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi P, Insana MF (1996) Error bounds on ultrasonic scatterer size estimates. J Acoust Soc Am 100:392–399

    Article  PubMed  CAS  Google Scholar 

  • Coron A, Mamou J, Hata M, Machi J, Yanagihara E, Laugier P, Feleppa EJ (2008) Three-dimensional segmentation of high-frequency ultrasound echo signals from dissected lymph nodes. In: Proceedings of the 2008 IEEE ultrasonics, symposium, pp 1370–1373

    Google Scholar 

  • Coron A, Mamou J, Saegusa-Beecroft E, Hata M, Lee P, Machi J, Yanagihara E, Laugier P, Feleppa EJ (2010) Assembling 3D histology volumes from sections of cancerous lymph nodes to match 3D high-frequency quantitative ultrasound images. In: Proceedings of the 2010 IEEE ultrasonics, symposium, pp 2368–2371

    Google Scholar 

  • D’Astous FT, Foster FS (1986) Frequency dependence of ultrasound attenuation and backscatter in breast tissue. Ultrasound Med Biol 12(10):795–808

    Article  PubMed  Google Scholar 

  • Duck FA (1990) Physical properties of tissue. A comprehensive reference book. Academic Press, New York

    Google Scholar 

  • Farnebäck G, Westin C-F (2006) Improving Deriche-style recursive Gaussian filters. J. Math. Imaging and Vis. 26:293–299

    Article  Google Scholar 

  • Feleppa EJ, Machi J, Noritomi T, Tateishi T, Oishi R, Yanagihara E, Jucha J (1997) Differentiation of metastatic from benign lymph nodes by spectrum analysis in vitro. In: Proceedings of the 1997 IEEE ultrasonics, symposium, pp 1137–1140.

    Google Scholar 

  • Feleppa EJ, Lizzi FL, Coleman DJ, Yaremko MM (1986) Diagnostics spectrum analysis in ophthalmology: a physical perspective. Ultrasound Med Biol 12:623–631

    Article  PubMed  CAS  Google Scholar 

  • Feleppa EJ, Porter CR, Ketterling J, Lee P, Dasgupta S, Urban S, Kalisz A (2004) Recent developments in tissue-type imaging (TTI) for planning and monitoring treatment of prostate cancer. Ultrason Imaging 26:163–172

    Article  PubMed  Google Scholar 

  • Franceschini E, Yu FT, Destrempes F, Cloutier G (2010) Ultrasound characterization of red blood cell aggregation with intervening attenuating tissue-mimicking phantoms. J Acoust Soc Am 127(2):1104–15

    Article  PubMed  Google Scholar 

  • Goss SA, Johnston RL, Dunn F (1978) Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J. Acoust. Soc. Am. 64:423–457

    Article  PubMed  CAS  Google Scholar 

  • Goss SA, Johnston RL, Dunn F (1980) Compilation of empirical ultrasonic properties of mammalian tissues II. J Acoust Soc Am 68: 93–108

    Google Scholar 

  • Insana MF, Wagner RF, Brown DG, Hall TJ (1990) Describing small-scale structure in random media using pulse-echo ultrasound. J Acoust Soc Am 87:179–192

    Article  PubMed  CAS  Google Scholar 

  • Insana MF, Wood JG, Hall TJ (1991) Identifying acoustic scattering sources in normal renal parenchyma in vivo by varying arterial and ureteral pressures. Ultrasound Med Biol 17:613–626

    Article  PubMed  CAS  Google Scholar 

  • Kino GS (1987) Acoustic waves. Prentice Hall, Englewoods Cliffs, NJ

    Google Scholar 

  • Kinsler LE, Frey AR, Coppens AB, Senders JV (2000) Fundamental of acoustics, 4th edn. John Wiley and Sons, Hoboken, NJ

    Google Scholar 

  • Klein S, Staring M, Murphy K, Viergever MA, Pluim JP (2010) Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29(1):196–205

    Article  PubMed  Google Scholar 

  • Lizzi FL, Greenebaum M, Feleppa EJ, Elbaum M, Coleman DJ (April 1983) Theoretical framework for spectrum analysis in ultrasonic tissue characterization. J Acoust Soc Am 73:1366–1373

    Article  Google Scholar 

  • Lizzi FL, Ostromogilsky M, Feleppa EJ, Rorke MC, Yaremko MM (May 1987) Relationship of ultrasonic spectral parameters to features of tissue microstructure. IEEE Trans Ultrason Ferroelectr Freq Control 34:319–329

    Article  PubMed  Google Scholar 

  • Mallat S (2009) A wavelet tour of signal processing—the sparse way, 3rd edn. Academic Press

    Google Scholar 

  • Mamou J, Oelze ML, O’Brien WD Jr, Zachary JF (2008) Extended three-dimensional impedance map methods for identifying ultrasonic scattering sites. J Acoust Soc Am 123:1195–1208

    Article  PubMed  Google Scholar 

  • Mamou J, Coron A, Hata M, Machi J, Yanagihara E, Laugier P, Feleppa EJ (2010) Three-dimensional high-frequency characterization of cancerous lymph nodes. Ultrasound Med Biol 36:361–375

    Article  PubMed  Google Scholar 

  • Mamou J, Coron A, Oelze ML, Saegusa-Beecroft E, Hata M, Lee P, Machi J, Yanagihara E, Laugier P, Feleppa EJ (2011) Three-dimensional high-frequency backscatter and envelope quantification of cancerous human lymph nodes. Ultrasound Med Biol 37(3):345–57

    Article  PubMed  Google Scholar 

  • Mamou J, Saegusa-Beecroft E, Coron A, Oelze M, Yamaguchi T, Machi J, Hata M, Yanagihara E, Laugier P, Feleppa EJ (2012) Three-dimensional quantitative high-frequency characterization of freshly-excised human lymph nodes. In: Proceedings of the 2011 IEEE ultrasonics, symposium, pp 37–40

    Google Scholar 

  • Oelze ML, Zachary JF, O’Brien WD Jr (2002) Parametric imaging of rat mammary tumors in vivo for the purposes of tissue characterization. J Ultrasound Med 21:1201–1210

    PubMed  Google Scholar 

  • Oelze ML, Zachary JF, O’Brien WD Jr (2002) Characterization of tissue microstructure using ultrasonic backscatter: Theory and technique for optimization using a Gaussian form factor. J Acoust Soc Am 112:1202–1211

    Article  PubMed  Google Scholar 

  • Oelze ML, O’Brien WD Jr (2002) Frequency-dependent attenuation-compensation functions for ultrasonic signals backscattered from random media. J. Acoust. Soc. Am. 111:2308–2319

    Article  PubMed  Google Scholar 

  • Oelze ML, Miller RJ, Blue JP Jr, Zachary JF, O’Brien WD Jr (2003) Impedance measurements of ex vivo rat lung at different volumes of inflation. J Acoust Soc Am 114:3384–3393

    Article  PubMed  Google Scholar 

  • Oelze ML, Zachary JF (2006) Examination of cancer in mouse models using high-frequency quantitative ultrasound. Ultrasound Med Biol 32:1639–1648

    Article  PubMed  Google Scholar 

  • Perez JE, Barzilai B, Wickline SA, Vered Z, Sobel BE, Miller JG (1988) Quantitative characterization of myocardium with ultrasonic imaging. J Nucl Med Allied Sci 32:149–157

    PubMed  CAS  Google Scholar 

  • Saha RK, Franceschini E, Cloutier G (2011) Assessment of accuracy of the structure-factor-size-estimator method in determining red blood cell aggregate size from ultrasound spectral backscatter coefficient. J Acoust Soc Am 129(4):2269–77

    Article  PubMed  Google Scholar 

  • Soille P (2002) Morphological image analysis–principles with applications, 2nd edn. Springer.

    Google Scholar 

  • van der Steen AF, Cuypers MH, Thijssen JM, de Wilde PC (1991) Influence of histochemical preparation on acoustic parameters of liver tissue: a 5-mhz study. Ultrasound Med Biol 17(9):879–891

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Mamou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mamou, J. et al. (2013). Backscatter Quantification for the Detection of Metastatic Regions in Human Lymph Nodes. In: Mamou, J., Oelze, M. (eds) Quantitative Ultrasound in Soft Tissues. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6952-6_7

Download citation

Publish with us

Policies and ethics