Skip to main content

Chloroplast Movement in Higher Plants, Ferns and Bryophytes: A Comparative Point of View

  • Chapter
  • First Online:
Photosynthesis in Bryophytes and Early Land Plants

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 37))

Summary

It is well known that chloroplasts move in response to changes in blue light intensity. Under low light conditions chloroplasts spread out in a so-called accumulation response and maximize light interception. Under high light they move to the anticlinal sides of cells, in a so-called avoidance reaction, minimizing light interception. In recent years tremendous progress has been made in our understanding of chloroplast movement due to a combination of new approaches and model systems. Mutant screens in Arabidopsis thaliana revealed a considerable number of new players, which modify the speed and the degree of the blue light driven movement of chloroplasts. In addition, better microscopy technologies revealed a fascinating picture of highly dynamic changes in chloroplast associated actin filaments that are essential for chloroplast movement. Our understanding has been further enhanced by studies of the gametophytes of the moss Physcomitrella patens and the fern Adiantum capillus-veneris. Using a microbeam that illuminates part of a cell, these microscopy studies gave insights into differences and similarities in photoreception and the mechanics of chloroplast movement comparing angiosperms and cryptogams. In addition by studying the behavior of individual chloroplasts within cells, information was gained on the speed and duration with which light signal information travels. Despite advances on the molecular level, our understanding of the species-specific variability and ecological importance of chloroplast movement is still rudimentary. This review will give an overview of our current understanding of chloroplast movement and will point out similarities and differences in behavior among higher plants, ferns and bryophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aihara Y, Tabata R, Suzuki T, Shimazaki K-I, Nagatani A (2008) Molecular basis of the functional specificities of phototropin 1 and 2. Plant J 56:364–375

    PubMed  CAS  Google Scholar 

  • Anielska-Mazur A, Bernaś T, Gabryś H (2009) In vivo reorganization of the actin cytoskeleton in leaves of Nicotiana tabacum L. transformed with plastin-GFP. Correlation with light-activated chloroplast responses. BMC Plant Biol 9:64

    PubMed  Google Scholar 

  • Augustynowicz J, Gabryś H (1999) Chloroplast movements in fern leaves: correlation of movement dynamics and environmental flexibility of the species. Plant Cell Environ 22:1239–1248

    Google Scholar 

  • Banaś AK, Gabryś H (2007) Influence of sugars on blue light-induced chloroplast relocations. Plant Signal Behav 2(4):221–230

    PubMed  Google Scholar 

  • Baum G, Long JC, Jenkins GI, Trewavas AJ (1999) Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Proc Natl Acad Sci USA 96:13554–13559

    PubMed  CAS  Google Scholar 

  • Berg R, Königer M, Schjeide B-M, Dikmak G, Kohler S, Harris GC (2006) A simple low-cost microcontroller-based photometric instrument for monitoring chloroplast movement. Photosynth Res 87:303–311

    PubMed  CAS  Google Scholar 

  • Brugnoli E, Björkman O (1992) Chloroplast movements in leaves: influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation. Photosynth Res 32:23–35

    CAS  Google Scholar 

  • Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45

    PubMed  CAS  Google Scholar 

  • Cox G, Hawes CR, Van Der Lubbe L, Juniper BE (1987) High-voltage electron microscopy of whole, critical-point dried plant cells 2. Cytoskeletal structures and plastid motility in Selaginella. Protoplasma 140(2–3):173–186

    Google Scholar 

  • DeBlasio SL, Luesse DL, Hangarter RP (2005) A plant-specific protein essential for blue-light-induced chloroplast movements. Plant Physiol 139:101–114

    PubMed  CAS  Google Scholar 

  • Demmig-Adams B (1998) Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant Cell Physiol 39(5):474–482

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

    PubMed  CAS  Google Scholar 

  • Dong X-J, Takagi S, Nagai R (1995) Regulation of the orientation movement of chloroplasts in epidermal cells of Vallisneria: cooperation of phytochrome with photosynthetic pigment under low-fluence-rate light. Planta 197:257–263

    CAS  Google Scholar 

  • Dong X-J, Ryu J-H, Takagi S, Nagai R (1996) Dynamic changes in the organization of microfilaments associated with the photocontrolled motility of chloroplasts in epidermal cells of Vallisneria. Protoplasma 195:18–24

    CAS  Google Scholar 

  • Gabryś H, Konopacka M (1980) The effect of temperature on chloroplast phototranslocations in Tradescantia albiflora leaves. Acta Physiol Plant 2(4):291–297

    Google Scholar 

  • Gorton HL, Williams WE, Vogelmann TC (1999) Chloroplast movement in Alocasia macrorrhiza. Physiol Plant 106:421–428

    CAS  Google Scholar 

  • Gorton HL, Herbert SK, Vogelmann TC (2003) Photoacoustic analysis indicates that chloroplast movement does not alter liquid-phase CO2 diffusion in leaves of Alocasia brisbanensis. Plant Physiol 132:1529–1539

    PubMed  CAS  Google Scholar 

  • Grabalska M, Malec P (2004) Blue light-induced chloroplast reorientations in Lemna trisulca L. (duckweed) are controlled by two separable cellular mechanisms as suggested by different sensitivity to wortmannin. Photochem Photobiol 79(4):343–348

    Google Scholar 

  • Haberlandt G (1876) Über den Einfluss des Frostes auf the Chlorophyllkörner. Österreichische Botanische Zeitschrift 26:249–255

    Google Scholar 

  • Harada A, Sakai T, Okada K (2003) Phot1 and phot2 mediate blue light-induced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves. Proc Natl Acad Sci USA 100(14):8583–8588

    PubMed  CAS  Google Scholar 

  • Inoue Y, Shibata K (1974) Comparative examination of terrestrial plant leaves in terms of light-induced absorption changes due to chloroplast rearrangements. Plant Cell Physiol 15(4):717–721

    Google Scholar 

  • Izutani Y, Takagi S, Nagai R (1990) Orientation movements of chloroplasts in Vallisneria epidermal cells: different effects of light at low-and high-fluence rate. Photochem Photobiol 51:105–111

    CAS  Google Scholar 

  • Jarillo JA, Gabryś H, Capel J, Alonso JM, Ecker JR, Cashmore AR (2001) Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410:952–954

    PubMed  CAS  Google Scholar 

  • Kadota A, Wada M (1992a) Photoorientation of chloroplasts in protonemal cells of the fern Adiantum as analyzed by use of a video-tracking system. Bot Mag 105:265–279

    Google Scholar 

  • Kadota A, Wada M (1992b) Photoinduction of formation of circular structures by microfilaments on chloroplasts during intracellular orientation in protonemal cells of the fern Adiantum capillus-veneris. Protoplasma 167:97–107

    Google Scholar 

  • Kadota A, Kohyama I, Wada M (1989) Polarotropism and photomovement of chloroplasts in the protonemata of the ferns Pteris and Adiantum. Evidence for the possible lack of dichroic phytochrome in Pteris. Plant Cell Physiol 30(4):523–531

    Google Scholar 

  • Kadota A, Sato Y, Wada M (2000) Intracellular chloroplast photorelocation in the moss Physcomitrella patens is mediated by phytochrome as well as a blue-light receptor. Planta 210:932–937

    PubMed  CAS  Google Scholar 

  • Kadota A, Yamada N, Suetsugu N, Hirose M, Saito C, Shoda K, Ichikawa S, Kagawa T, Nakano A, Wada M (2009) Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. Proc Natl Acad Sci USA 106(31):13106–13111

    PubMed  CAS  Google Scholar 

  • Kagawa T, Wada M (1994) Brief irradiation with red or blue light induces orientational movement of chloroplasts in dark-adapted prothallial cells of the fern Adiantum. J Plant Res 107:389–398

    Google Scholar 

  • Kagawa T, Wada M (1996) Phytochrome- and blue light-absorbing pigment-mediated directional movement of chloroplasts in dark-adapted prothallial cells of fern Adiantum as analyzed by microbeam irradiation. Planta 198:488–493

    CAS  Google Scholar 

  • Kagawa T, Wada M (1999) Chloroplast-avoidance response induced by high-fluence blue light in prothallial cells of the fern Adiantum capillus-veneris as analyzed by microbeam irradiation. Plant Physiol 119:917–923

    PubMed  CAS  Google Scholar 

  • Kagawa T, Wada M (2000) Blue light-induced chloroplast relocation in Arabidopsis thaliana as analyzed by microbeam irradiation. Plant Cell Physiol 41(1):84–93

    PubMed  CAS  Google Scholar 

  • Kagawa T, Wada M (2004) Velocity of chloroplast avoidance movement is fluence rate dependent. Photochem Photobiol Sci 3:592–595

    PubMed  CAS  Google Scholar 

  • Kagawa T, Lamparter T, Hartman E, Wada M (1997) Phytochrome-mediated branch formation in protonemata of the moss Ceratodon purpureus. J Plant Res 110:363–370

    CAS  Google Scholar 

  • Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–2141

    PubMed  CAS  Google Scholar 

  • Kagawa T, Kasahara M, Abe T, Yoshida S, Wada M (2004) Function analysis of Phototropin2 using fern mutants deficient in blue light-induced chloroplast avoidance movement. Plant Cell Physiol 45(4):416–426

    PubMed  CAS  Google Scholar 

  • Kaiserli E, Sullivan S, Jones MA, Feeney KA, Christie JM (2009) Domain swapping to assess the mechanistic basis of Arabidopsis phototropin1 receptor kinase activation and endocytosis by blue light. Plant Cell 21:3226–3244

    PubMed  CAS  Google Scholar 

  • Kandasamy MK, Meagher RB (1999) Actin-organelle interaction: association with chloroplast in Arabidopsis leaf mesophyll cells. Cell Motil Cytoskeleton 44:110–118

    PubMed  CAS  Google Scholar 

  • Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832

    PubMed  CAS  Google Scholar 

  • Kasahara M, Kagawa T, Sato Y, Kiyosue T, Wada M (2004) Phototropins mediate blue and red light-induced chloroplast movements in Physcomitrella patens. Plant Physiol 135:1388–1397

    PubMed  CAS  Google Scholar 

  • Kawai H, Kanegae T, Christensen S, Kiyosue T, Sato Y, Imalzumi T, Kadota A, Wada M (2003) Responses of ferns to red light are mediated by an unconventional photoreceptor. Nature 421:287–290

    PubMed  CAS  Google Scholar 

  • Kimura M, Kagawa T (2009) Blue light-induced chloroplast avoidance and phototropic responses exhibit distinct dose dependency of PHOTOTROPIN2 in Arabidopsis thaliana. Photochem Photobiol 85(5):1260–1264

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Yamada M, Taniguchi M, Kawasaki M, Sugiyama T, Miyake H (2009) Differential positioning of C4 mesophyll and bundle sheath chloroplasts: recovery of chloroplast positioning requires the actomyosin system. Plant Cell Physiol 50(1):129–140

    PubMed  CAS  Google Scholar 

  • Kodama Y, Tsuboi H, Kagawa T, Wada M (2008) Low temperature-induced chloroplast relocation mediated by a blue light receptor, phototropin 2, in fern gametophytes. J Plant Res 121:441–448

    PubMed  CAS  Google Scholar 

  • Kodama Y, Suetsugu N, Kong S-G, Wada M (2010) Two interacting coiled-coil proteins, WEB1 and PMI2, maintain the chloroplast photorelocation movement velocity in Arabidopsis. Proc Natl Acad Sci USA 107(45):19591–19596

    PubMed  CAS  Google Scholar 

  • Kondo A, Kaikawa J, Funaguma T, Ueno O (2004) Clumping and dispersal of chloroplasts in succulent plants. Planta 219:500–506

    PubMed  CAS  Google Scholar 

  • Kong S-G, Suzuki T, Tamura K, Mochizuki N, Hara-Nishimura I, Nagatani A (2006) Blue light-induced association of phototropin 2 with the Golgi apparatus. Plant J 45(6):994–1005

    PubMed  CAS  Google Scholar 

  • Königer M, Bollinger N (2012) Chloroplast movement behavior varies widely among species and does not correlate with high light stress tolerance. Planta 236(2):411–426

    PubMed  Google Scholar 

  • Königer M, Harris GC, Virgo A, Winter K (1995) Xanthophyll-cycle pigments and photosynthetic capacity in tropical forest species: a comparative field study on canopy, gap and understory plants. Oecologia 104:280–290

    Google Scholar 

  • Königer M, Delamaide JA, Marlow ED, Harris GC (2008) Arabidopsis thaliana leaves with altered chloroplast numbers and chloroplast movement exhibit impaired adjustments to both low and high light. J Exp Bot 59(9):2285–2297

    PubMed  Google Scholar 

  • Königer M, Jessen B, Yang R, Sittler D, Harris GC (2010) Light, genotype, and abscisic acid affect chloroplast positioning in guard cells of Arabidopsis thaliana leaves in distinct ways. Photosynth Res 105(3):213–227

    PubMed  Google Scholar 

  • Krzeszowiec W, Gabryś H (2007) Phototropin mediated relocation of myosins in Arabidopsis thaliana. Plant Signal Behav 2(5):333–336

    PubMed  Google Scholar 

  • Krzeszowiec W, Rajwa B, Dobrucki J, Gabryś H (2007) Actin cytoskeleton in Arabidopsis thaliana under blue and red light. Biol Cell 99:251–260

    PubMed  CAS  Google Scholar 

  • Kumatani T, Sakurai-Ozato N, Miyawaki N, Yokota E, Shimmen T, Terashima I, Takagi S (2006) Possible association of actin filaments with chloroplasts of spinach mesophyll cells in vivo and in vitro. Protoplasma 229:45–52

    PubMed  CAS  Google Scholar 

  • Lehmann P, Bohnsack MT, Schleiff E (2011) The functional domains of the chloroplast unusual positioning protein 1. Plant Sci 180:650–654

    PubMed  CAS  Google Scholar 

  • Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260

    PubMed  CAS  Google Scholar 

  • Liebe S, Menzel D (1995) Actomyosin-based motility of endoplasmic reticulum and chloroplasts in Vallisneria mesophyll cells. Biol Cell 85:207–222

    PubMed  CAS  Google Scholar 

  • Loreto F, Tsonev T, Centritto M (2009) The impact of blue light on leaf mesophyll conductance. J Exp Bot 60(8):2283–2290

    PubMed  CAS  Google Scholar 

  • Luesse DR, DeBlasio SL, Hangarter RP (2006) Plastid movement impaired 2, a new gene involved in normal blue-light-induced chloroplast movements in Arabidopsis. Plant Physiol 141:1328–1337

    PubMed  CAS  Google Scholar 

  • Luesse DR, DeBlasio SL, Hangarter RP (2010) Integration of phot1, phot2, and phyB signalling in light-induced chloroplast movements. J Exp Bot 61(15):4387–4397

    PubMed  CAS  Google Scholar 

  • Maai E, Shimada S, Yamada M, Sugiyama T, Miyake H, Taniguchi M (2011) The avoidance and aggregative movements of mesophyll chloroplasts in C4 monocots in response to blue light and abscisic acid. J Exp Bot 62(9):3213–3221

    PubMed  CAS  Google Scholar 

  • Malec P, Rinaldi RA, Gabryś H (1996) Light-induced chloroplast movements in Lemna trisulca. Identification of the motile system. Plant Sci 120:127–137

    CAS  Google Scholar 

  • Mittmann F, Brücker G, Zeidler M, Repp A, Abts T, Hartmann E, Hughes J (2004) Targeted knockout in Physcomitrella reveals direct actions of phytochrome in the cytoplasm. Proc Natl Acad Sci USA 101(38):13939–13944

    PubMed  CAS  Google Scholar 

  • Miyake H, Nakamura M (1993) Some factors concerning the centripetal disposition of bundle sheath chloroplasts during the leaf development of Eleusine coracana. Ann Bot 72:205–211

    Google Scholar 

  • Miyake H, Yamamoto Y (1987) Centripetal disposition of bundle sheath chloroplasts during the leaf development of Eleusine coracana. Ann Bot 60:641–647

    Google Scholar 

  • Nozue K, Kanegae T, Imaizumi T, Fukuda S, Okamoto H, Yeh K-C, Lagarias JC, Wada M (1998) A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proc Natl Acad Sci USA 95:15826–15830

    PubMed  CAS  Google Scholar 

  • Oikawa K, Kasahara M, Kiyosue T, Kagawa T, Suetsugu N, Takahashi F, Kanegae T, Niwa Y, Kadota A, Wada M (2003) Chloroplast unusual positioning1 is essential for proper chloroplast positioning. Plant Cell 15:2805–2815

    PubMed  CAS  Google Scholar 

  • Oikawa K, Yamasato A, Kong S-G, Kasahara M, Nakai M, Takahashi F, Ogura Y, Kagawa T, Wada M (2008) Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement. Plant Physiol 148:829–842

    PubMed  CAS  Google Scholar 

  • Park Y-I, Chow WS, Anderson JM (1996) Chloroplast movement in the shade plant Tradescantia albiflora helps protect photosystem II against light stress. Plant Physiol 111:867–875

    PubMed  CAS  Google Scholar 

  • Paves H, Truve E (2007) Myosin inhibitors block accumulation movement of chloroplasts in Arabidopsis thaliana leaf cells. Protoplasma 230:165–169

    PubMed  CAS  Google Scholar 

  • Peremyslov VV, Prokhnevsky AI, Avisar D, Dolja VV (2008) Two class XI myosins function in organelle trafficking and root hair development in Arabidopsis. Plant Physiol 146:1109–1116

    PubMed  CAS  Google Scholar 

  • Reisen D, Hanson MR (2007) Association of six YFP-myosin XI-tail fusions with mobile plant cell organelles. BMC Plant Biol 7:6

    PubMed  Google Scholar 

  • Russell AJ, Cove DJ, Trewavas AJ, Wang TL (1998) Blue light but not red light induces a calcium transient in the moss Physcomitrella patens (Hedw) B, S & G. Planta 206:278–283

    CAS  Google Scholar 

  • Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA 98(12):6969–6974

    PubMed  CAS  Google Scholar 

  • Sakamoto K, Briggs WR (2002) Cellular and subcellular localization of phototropin 1. Plant Cell 14:1723–1735

    PubMed  CAS  Google Scholar 

  • Sakurai N, Domoto K, Takagi S (2005) Blue-light-induced reorganization of the actin cytoskeleton and the avoidance response of chloroplasts in epidermal cells of Vallisneria gigantea. Planta 221:66–74

    PubMed  CAS  Google Scholar 

  • Sato Y, Kadota A, Wada M (1999) Mechanically induced avoidance response of chloroplasts in fern protonemal cells. Plant Physiol 121:37–44

    PubMed  CAS  Google Scholar 

  • Sato Y, Wada M, Kadota A (2001a) External Ca2+ is essential for chloroplast movement induced by mechanical stimulation but not by light stimulation. Plant Physiol 127:497–504

    PubMed  CAS  Google Scholar 

  • Sato Y, Wada M, Kadota A (2001b) Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor. J Cell Sci 114:269–279

    PubMed  CAS  Google Scholar 

  • Sato Y, Kadota A, Wada M (2003) Chloroplast movement: dissection of events downstream of photo- and mechano-perception. J Plant Res 116:1–5

    PubMed  Google Scholar 

  • Sattarzadeh A, Krahmer J, Germain AD, Hanson MR (2009) A myosin XI tail domain homologous to the yeast myosin vacuole-binding domain interacts with plastids and stromules in Nicotiana benthamiana. Mol Plant 2(6):1351–1358

    PubMed  CAS  Google Scholar 

  • Schmidt von Braun S, Schleiff E (2008a) Moving the Green. CHUP1 and chloroplast movement – an obvious relationship? Plant Signal Behav 3:488–489

    PubMed  Google Scholar 

  • Schmidt von Braun S, Schleiff E (2008b) The chloroplast outer membrane protein CHUP1 interacts with actin and profilin. Planta 227:1151–1159

    PubMed  CAS  Google Scholar 

  • Senn G (1908) Die Gestalts- und Lageveränderung der pflanzenchromatophoren. Engelmann, Leipzig

    Google Scholar 

  • Sharon Y, Beer S (2008) Diurnal movements of chloroplasts in Halophila stipulacea and their effect on PAM fluorometric measurements of photosynthetic rates. Aquat Bot 88:273–276

    CAS  Google Scholar 

  • Stoelzle S, Kagawa T, Wada M, Hedrich R, Dietrich P (2003) Blue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway. Proc Natl Acad Sci USA 100(3):1456–1461

    PubMed  CAS  Google Scholar 

  • Suetsugu N, Wada M (2007) Chloroplast photorelocation movement mediated by phototropin family proteins in green plants. Biol Chem 388:927–935

    PubMed  CAS  Google Scholar 

  • Suetsugu N, Kagawa T, Wada M (2005a) An auxilin-like J-domain protein, JAC1, regulates phototropin-mediated chloroplast movement in Arabidopsis. Plant Physiol 139:151–162

    PubMed  CAS  Google Scholar 

  • Suetsugu N, Mittmann F, Wagner G, Hughes J, Wada M (2005b) A chimeric photoreceptor gene, NEOCHROME, has arisen twice during plant evolution. Proc Natl Acad Sci USA 102:13705–13709

    PubMed  CAS  Google Scholar 

  • Suetsugu N, Takano A, Kohda D, Wada M (2010a) Structure and activity of JAC1 J-domain implicate the involvement of the cochaperone activity with HSC70 in chloroplast photorelocation movement. Plant Signal Behav 5(12):1602–1606

    PubMed  CAS  Google Scholar 

  • Suetsugu N, Yamada N, Kagawa T, Yonekura H, Uyeda TQP, Kadota A, Wada M (2010b) Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. Proc Natl Acad Sci USA 107(19):8860–8865

    PubMed  CAS  Google Scholar 

  • Sugiyama Y, Kadota A (2011) Photosynthesis-dependent but neochrome1-independent light positioning of chloroplasts and nuclei in the fern Adiantum capillus-veneris. Plant Physiol 155:1205–1213

    PubMed  CAS  Google Scholar 

  • Sullivan S, Kaiserli E, Tseng T-S, Christie JM (2010) Subcellular localization and turnover of Arabidopsis phototropin 1. Plant Signal Behav 5(2):184–186

    PubMed  CAS  Google Scholar 

  • Sztatelman O, Waloszek A, Banas AK, Gabryś H (2010) Photoprotective function of chloroplast avoidance movement: in vivo chlorophyll fluorescence study. J Plant Physiol 167:709–716

    PubMed  CAS  Google Scholar 

  • Takagi S (2003) Actin-based photo-orientation movement of chloroplasts in plant cells. J Exp Biol 206:1963–1969

    PubMed  CAS  Google Scholar 

  • Takagi S, Takamatsu H, Sakurai-Ozato N (2009) Chloroplast anchoring: its implications for the regulation of intracellular chloroplast distribution. J Exp Bot 60(12):3301–3310

    PubMed  CAS  Google Scholar 

  • Tanaka A (2007) Photosynthetic activity in winter needles of the evergreen tree Taxus cuspidata at low temperatures. Tree Physiol 27:641–648

    PubMed  CAS  Google Scholar 

  • Terashima I, Hikosaka K (1995) Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ 18:1111–1128

    Google Scholar 

  • Tholen D, Boom C, Noguchi K, Ueda S, Katase T, Terashima I (2008) The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves. Plant Cell Environ 31:1688–1700

    PubMed  CAS  Google Scholar 

  • Tlalka M, Fricker M (1999) The role of calcium in blue-light-dependent chloroplast movement in Lemna trisulca L. Plant J 20(4):461–473

    PubMed  CAS  Google Scholar 

  • Tlalka M, Gabryś H (1993) Influence of calcium on blue-light-induced chloroplast movement in Lemna trisulca L. Planta 189:491–498

    CAS  Google Scholar 

  • Tlalka M, Runquist M, Fricker M (1999) Light perception and the role of the xanthophyll cycle in blue-light-dependent chloroplast movements in Lemna trisulca L. Plant J 20(4):447–459

    PubMed  CAS  Google Scholar 

  • Trojan A, Gabryś H (1996) Chloroplast distribution in Arabidopsis thaliana (L.) depends on light conditions during growth. Plant Physiol 111:419–425

    PubMed  CAS  Google Scholar 

  • Tsuboi H, Wada M (2010a) Speed of signal transfer in the chloroplast accumulation response. J Plant Res 123(3):381–390

    PubMed  CAS  Google Scholar 

  • Tsuboi H, Wada M (2010b) The speed of intracellular signal transfer for chloroplast movement. Plant Signal Behav 5(4):433–435

    PubMed  Google Scholar 

  • Tsuboi H, Yamashita H, Wada M (2009) Chloroplasts do not have a polarity for light-induced accumulation movement. J Plant Res 122:131–140

    PubMed  Google Scholar 

  • Uenaka H, Kadota A (2007) Functional analyses of the Physcomitrella patens phytochromes in regulating chloroplast avoidance movement. Plant J 51:1050–1061

    PubMed  CAS  Google Scholar 

  • Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Biol 54:455–468

    PubMed  CAS  Google Scholar 

  • Walczak T, Gabryś H (1980) New type of photometer for measurements of transmission changes corresponding to chloroplast movements in leaves. Photosynthetica 14:65–72

    Google Scholar 

  • Wang Z, Pesacreta TC (2004) A subclass of myosin XI is associated with mitochondria, plastids and the molecular chaperone subunit TCP-1a in maize. Cell Motil Cytoskeleton 57:218–232

    PubMed  CAS  Google Scholar 

  • Wen F, Xing D, Zhang L (2008) Hydrogen peroxide is involved in high blue light-induced chloroplast avoidance movements in Arabidopsis. J Exp Biol 59(10):2891–2901

    CAS  Google Scholar 

  • Whippo CW, Khurana P, Davis PA, DeBlasio SL, DeSloover D, Staiger CJ, Hangarter RP (2011) THRUMIN1 is a light-regulated actin-bundling protein involved in chloroplast motility. Curr Biol 21:59–64

    PubMed  CAS  Google Scholar 

  • Williams WE, Gorton HL, Witiak SM (2003) Chloroplast movements in the field. Plant Cell Environ 26:2005–2014

    Google Scholar 

  • Yamada M, Kawasaki M, Sugiyama T, Miyake H, Taniguchi M (2009) Differential positioning of C4 mesophyll and bundle sheath chloroplasts: aggregative movement of C4 mesophyll chloroplasts in response to environmental stresses. Plant Cell Physiol 50(10):1736–1749

    PubMed  CAS  Google Scholar 

  • Yamashita H, Sato Y, Kanegae T, Kagawa T, Wada M, Kadota A (2011) Chloroplast actin filaments organize meshwork on the photorelocated chloroplasts in the moss Physcomitrella patens. Planta 233(2):357–368

    PubMed  CAS  Google Scholar 

  • Yatsuhashi H, Kobayashi H (1993) Dual involvement of phytochrome in light-oriented chloroplast movement in Dryopteris sparsa protonemata. J Photochem Photobiol B 19:25–31

    CAS  Google Scholar 

  • Yatsuhashi H, Kadota A, Wada M (1985) Blue- red-light action in photoorientation of chloroplasts in Adiantum protonemata. Planta 165:43–50

    Google Scholar 

  • Zurzycki J (1955) Chloroplast arrangement as a factor in photosynthesis. Acta Soc Bot Pol 24:27–63

    Google Scholar 

  • Zurzycki J (1967) Properties and localization of the photoreceptor active in displacements of chloroplasts in Funaria hygrometrica. I. Action spectrum. Acta Soc Bot Pol 36:133–142

    CAS  Google Scholar 

  • Zurzycki J (1980) Blue light-induced intracellular movements. In: Senger H (ed) The Blue light syndrome. Springer, New York, pp 50–68

    Google Scholar 

Download references

Acknowledgements

I would like to thank Wellesley College for granting me a sabbatical leave and Prof. Schleiff for providing me with a ‘home’ in his lab to think and write.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Königer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Königer, M. (2014). Chloroplast Movement in Higher Plants, Ferns and Bryophytes: A Comparative Point of View. In: Hanson, D., Rice, S. (eds) Photosynthesis in Bryophytes and Early Land Plants. Advances in Photosynthesis and Respiration, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6988-5_8

Download citation

Publish with us

Policies and ethics