Skip to main content

Chemical Sensors Based on Nano-hexagonal Tungsten Oxide: Synthesis and Characterization

  • Conference paper
  • First Online:
Advanced Sensors for Safety and Security

Abstract

Tungsten oxide based materials have received a great attention in the fabrication of semiconducting oxide based gas sensor devices. In the present work the preparation of nanocrystalline hexagonal WO3 (hex-WO3) from sodium tungstate solution by acidic precipitation as a nanocrystalline processing route is presented. Metal decorated carbon nanotubes (CNTs) were added to hex-WO3 nanopowder with the aim to further lower the operating temperature of sensors. Hex-WO3/Au-decorated MWCNTs composites were able to detect as low as 100 ppb of NO2, with no need to heat the sensors substrates during operation, which demonstrates the high potential of our new gas sensors. The developed porous tungsten oxide nanofibers might be find application on a special chip designed for gas sensorics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Solonin YM, Khyzhun OY, Graivoronskaya EA (2001) Nonstoichiometric tungsten oxide based on hexagonal WO3. Cryst Growth Des 1:473

    Article  CAS  Google Scholar 

  2. Kim G-S, Lee YJ, Kim D-G, Kim YD (2008) Consolidation behavior of Mo powder fabricated from milled Mo oxide by hydrogen-reduction. J Alloy Compd 454:327

    Article  CAS  Google Scholar 

  3. Gillet M et al (2007) Growth, structure and electrical conduction of WO3 nanorods. Appl Surf Sci 254:270–273

    Article  CAS  Google Scholar 

  4. Stankova M, Vilanova X, Llobet E, Calderer J, Bittencourt C, Pireaux JJ, Correig X (2005) Influence of the annealing and operating temperatures on the gas sensing properties of rf sputtered WO3 thin-film sensors. Sens Actuator B 105:271–277

    Article  CAS  Google Scholar 

  5. Choi YG, Sakai G, Shimanoe K, Yamazoe N (2004) Wet process-based fabrication of WO3 thin film for NO2 detection. Sens Actuator B 101:107–111

    Article  CAS  Google Scholar 

  6. Balazsi C, Sedlackova K, Llobet E, Ionescu R (2008) Novel hexagonal WO3 nanopowder with metal decorated carbon nanotubes as NO2 gas sensor. Sens Actuator B 133(1):151–155

    Article  CAS  Google Scholar 

  7. Boulova M, Gaskov A, Lucazeau G (2001) Tungsten oxide reactivity versus CH4, CO and NO2 molecules studied by Raman spectroscopy. Sens Actuator B 81:99–106

    Article  CAS  Google Scholar 

  8. Vallejos S, Khatko V, Calderer J, Gracia I, Cané C, Llobet E, Correig X (2008) Micro-machined WO3-based sensors selective to oxidizing gases. Sens Actuator B 132:209–215

    Article  CAS  Google Scholar 

  9. Yang J-C, Dutta PK (2009) Solution-based synthesis of efficient WO3 sensing electrodes for high temperature potentiometric NOx sensors. Sens Actuator B 136:523–529

    Article  CAS  Google Scholar 

  10. Comini E, Ferroni M, Guidi V, Faglia G, Martinelli G, Sberveglieri G (2002) Nanostructured mixed oxides compounds for gas sensing applications. Sens Actuator B 84:26–32

    Article  CAS  Google Scholar 

  11. Yang J-C, Dutta PK (2007) Promoting selectivity and sensitivity for a high temperature YSZ-based electrochemical total NOx sensor by using a Pt-loaded zeolite Y filter. Sens Actuator B 125:30–39

    Article  CAS  Google Scholar 

  12. Reyes LF, Hoel A, Saukko S, Heszler P, Lantto V, Granqvist CG (2006) Gas sensor response of pure and activated WO3 nanoparticle films made by advanced gas reactive gas deposition. Sens Actuator B 117:128–134

    Article  CAS  Google Scholar 

  13. Mohammed AA, Gillet M (2002) Phase transformations in WO3 thin films during annealing. Thin Solid Film 408:302–309

    Article  Google Scholar 

  14. Akiyama M, Zhang Z, Tamaki J, Miura N, Yamazoe N, Harada T (1993) Tungsten oxide-based semiconductor sensor for detection of nitrogen oxides in combustion exhaust. Sens Actuator B 14:619–620

    Article  CAS  Google Scholar 

  15. Xu Z, Vetelino JF, Lee R, Parker DC, Vac J, Tracy CE, Benson DK (1986) Preparation of amorphous electrochromic tungsten oxide and molybdenum oxide by plasma enhanced chemical vapor deposition. Sci Technol A 4:2377

    Google Scholar 

  16. Kaneko H, Nishimoto S, Miyake K, Suedomi N (1986) Physical and electrochemichromic properties of rf sputtered tungsten oxide films. J Appl Phys 59:2526–2534

    Article  CAS  Google Scholar 

  17. Pal S, Jacob C (2007) The influence of substrate temperature variation on tungsten oxide thin film growth in an. HFCVD system. Appl Surf Sci 253:3317–3325

    Article  CAS  Google Scholar 

  18. Shieh J, Feng HM, Hon MH, Juang HY (2002) WO3 and W-Ti-O thin film gas sensors prepared by sol-gel dip coating. Sens Actuator B 86:75–80

    Article  CAS  Google Scholar 

  19. Espinosa EH, Ionescu R, Chambon B, Bedis G, Sotter E, Bittencourt C, Felten A, Pireaux J-J, Correig X, Llobet E (2007) Hybrid metal oxide and multiwall carbon nanotube films for low temperature gas sensing. Sens Actuator B 127:137–142

    Article  CAS  Google Scholar 

  20. Balázsi C, Kalyanasundaram K, Ozkan Zayim E, Pfeifer J, Tóth AL, Gouma PI (2006) Tungsten oxide nanocrystals for electrochromic and sensing applications. In: Freiman S (ed) Proceedings of the 1st international congress on ceramics. Wiley, Toronto, pp 1–6

    Google Scholar 

  21. Balázsi C, Farkas-Jahnke M, Kotsis I, Petrás L, Pfeifer J (2001) The observation of cubic tungsten trioxide at high temperature dehydration of tungstic acid hydrate. Solid State Ion 141–142:411–416

    Article  Google Scholar 

  22. Balázsi C, Özkan Zayim E (2007) Preparation and characterisation of WO3.1/3H2O thin films. Mater Sci Forum 537–538:113–120

    Article  Google Scholar 

  23. Pfeifer J, Balázsi C, Kiss BA, Pécz B, Tóth AL (1999) The influence of residual sodium on the formation and reductive decomposition of hexagonal tungsten oxide. J Mater Sci Lett 18:1103–1105

    Article  CAS  Google Scholar 

  24. http://daq.state.nc.us/rules/rules/D0407.pdf

Download references

Acknowledgements

The work was supported by the bilateral NSF-OTKA-MTA co-operation, contract # MTA:96 OTKA: 049953. The authors are grateful to Felten and Pireaux for providing to this study the metal decorated CNTs. Many thanks to Tóth for SEM, Ionescu and Prof. Gouma for sensor measurements. We acknowledge the financial help from NIH-DST Hungarian-Indian program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Balázsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Balázsi, C., Lukács, I.E., Balázsi, K. (2013). Chemical Sensors Based on Nano-hexagonal Tungsten Oxide: Synthesis and Characterization. In: Vaseashta, A., Khudaverdyan, S. (eds) Advanced Sensors for Safety and Security. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7003-4_10

Download citation

Publish with us

Policies and ethics