Skip to main content

Blood Cell Bioprocessing: The Haematopoietic System and Current Status of In-Vitro Production of Red Blood Cells

  • Chapter
  • First Online:
Stem Cells and Cell Therapy

Part of the book series: Cell Engineering ((CEEN,volume 8))

  • 2068 Accesses

Abstract

Haematopoietic stem cells and a number of cell types derived from them are routinely transfused clinically. Haematopoietic lineage cells used for transfusion are predominantly red cells, followed by platelets and granulocytes. However, although blood transfusion has revolutionized modern medicine over the past century, many issues still exist with supply, particularly in developing nations, and adverse reactions and infections are still commonplace raising concerns for both donor and recipient safety. The production of hematopoietic lineage cells in vitro would assuage safety concerns and maintain supply. It would also resolve issues such as blood cell shelf-life and ageing by providing homogenous populations of cells; allow for production of universal/rare blood types on demand; and could provide a therapeutic solution in the case of conditions such as haemoglobinopathies. Theoretically it is possible to generate functional, mature cells of all hematopoietic lineages in vitro, however, the sheer volumes of blood cells required to meet current transfusion demand (or even demand for rare blood types), and production-associated costs means that, at present, this process is not feasible for routine treatment. Here we review the current state of in vitro blood cell production with particular emphasis on the generation of red blood cells/erythrocytes; and explore the technical issues associated with medium-to-large scale manufacturing of these cells, and the likelihood of commercial production and routine clinical use in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulrazzak H, Moschidou D, Jones G, Guillot PV (2010) Biological characteristics of stem cells from foetal, cord blood and extraembryonic tissues. J R Soc Interface 7:S689–S706

    Article  PubMed  Google Scholar 

  • An XL, Mohandas N (2011) Erythroblastic islands, terminal erythroid differentiation and reticulocyte maturation. Int J Hematol 93:139–143

    Article  PubMed  Google Scholar 

  • Anstee DJ (2010) Production of erythroid cells from human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPS). Transfus Clin Biol 17:104–109

    Article  PubMed  CAS  Google Scholar 

  • Baek EJ, Kim HS, Kim S, Jin H, Choi TY, Kim HO (2008) In vitro clinical-grade generation of red blood cells from human umbilical cord blood CD34+ cells. Transfusion 48:2235–2245

    Article  PubMed  Google Scholar 

  • Baek EJ, Kim HS, Kim JH, Kim NJ, Kim HO (2009) Stroma-free mass production of clinical-grade red blood cells (RBCs) by using poloxamer 188 as an RBC survival enhancer. Transfusion 49:2285–2295

    Article  PubMed  Google Scholar 

  • Baek EJ, You J, Kim MS, Lee SY, Cho SJ, Kim E, Kim HO (2010) Enhanced production of red blood cells in suspension by electrostatic interactions with culture plates. Tissue Eng Part C Methods 16:1325–1334

    Article  PubMed  Google Scholar 

  • Baron MH, Isern J, Fraser ST (2012) The embryonic origins of erythropoiesis in mammals. Blood 119:4828–4837

    Article  PubMed  CAS  Google Scholar 

  • Bell AJ, Satchwell TJ, Heesom KJ, Hawley BR, Kupzig S, Hazell M, Mushens R, Herman A, Toye AM (2013) Protein distribution during human erythroblast enucleation in-vitro. PLoS One 8:e60300

    Article  PubMed  CAS  Google Scholar 

  • Bender JG, Unverzagt K, Walker DE, Lee W, Smith S, Williams S, Vanepps DE (1994) Phenotypic analysis and characterization of Cd34+ cells from normal human bone-marrow, cord-blood, peripheral-blood, and mobilized peripheral-blood from patients undergoing autologous stem-cell transplantation. Clin Immunol Immunopathol 70:10–18

    Article  PubMed  CAS  Google Scholar 

  • Boehm D, Murphy WG, Al Rubeai M (2009) The potential of human peripheral blood derived CD34+ cells for ex vivo red blood cell production. J Biotechnol 144:127–134

    Article  PubMed  CAS  Google Scholar 

  • Boehm D, Murphy WG, Al Rubeai M (2010) The effect of mild agitation on in vitro erythroid development. J Immunol Methods 360:20–29

    Article  PubMed  CAS  Google Scholar 

  • Brugger W, Mocklin W, Heimfeld S, Berenson RJ, Mertelsmann R, Kanz L (1993) Exvivo expansion of enriched peripheral-blood Cd34+ progenitor cells by stem-cell factor, interleukin-1-beta (Il-1-beta), Il-6, Il-3, interferon-gamma, and erythropoietin. Blood 81:2579–2584

    PubMed  CAS  Google Scholar 

  • Castro CI, Briceno JC (2010) Perfluorocarbon-based oxygen carriers: review of products and trials. Artif Organs 34:622–634

    PubMed  Google Scholar 

  • Cipolleschi MG, Dippolito G, Bernabei PA, Caporale R, Nannini R, Mariani M, Fabbiani M, RossiFerrini P, Olivotto M, DelloSbarba P (1997) Severe hypoxia enhances the formation of erythroid bursts from human cord blood cells and the maintenance of BFU-E in vitro. Exp Hematol 25:1187–1194

    PubMed  CAS  Google Scholar 

  • Csaszar E, Kirouac DC, Yu M, Wang WJ, Qiao WL, Cooke MP, Boitano AE, Ito C, Zandstra PW (2012) Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling. Cell Stem Cell 10:218–229

    Article  PubMed  CAS  Google Scholar 

  • Dai CH, Krantz SB, Zsebo KM (1991) Human burst-forming units-erythroid need direct interaction with stem-cell factor for further development. Blood 78:2493–2497

    PubMed  CAS  Google Scholar 

  • Dalyot N, Fibach E, Rachmilewitz EA, Oppenheim A (1992) Adult and neonatal patterns of human globin gene-expression are recapitulated in liquid cultures. Exp Hematol 20:1141–1145

    PubMed  CAS  Google Scholar 

  • Dolznig H, Habermann B, Stangl K, Deiner EM, Moriggl R, Beug H, Mullner EW (2002) Apoptosis protection by the Epo target Bcl-X-L allows factor-independent differentiation of primary erythroblasts. Curr Biol 12:1076–1085

    Article  PubMed  CAS  Google Scholar 

  • The collection, testing and use of blood and blood components in Europe. 2009 Report. Department of Biological Standardisation, OMCL Network. European Directorate for the Quality of Medicines & Healthcare (EDQM). Council of Europe. Strasbourg, France

    Google Scholar 

  • Fibach E, Rachmilewitz EA (1990) Proliferation and differentiation of erythroid progenitors in liquid culture – analysis of progenitors derived from patients with polycythemia-vera. Am J Hematol 35:151–156

    Article  PubMed  CAS  Google Scholar 

  • Fibach E, Manor D, Oppenheim A, Rachmilewitz EA (1989) Proliferation and maturation of human erythroid progenitors in liquid culture. Blood 73:100–103

    PubMed  CAS  Google Scholar 

  • Fibach E, Manor D, Treves A, Rachmilewitz EA (1991) Growth of human normal erythroid progenitors in liquid culture – a comparison with colony growth in semisolid culture. Int J Cell Cloning 9:57–64

    Article  PubMed  CAS  Google Scholar 

  • Fibach E, Burke LP, Schechter AN, Noguchi CT, Rodgers GP (1993) Hydroxyurea increases fetal hemoglobin in cultured erythroid-cells derived from normal individuals and patients with sickle-cell-anemia or beta-thalassemia. Blood 81:1630–1635

    PubMed  CAS  Google Scholar 

  • Fujimi A, Matsunaga T, Kobune M, Kawano Y, Nagaya T, Tanaka I, Iyama S, Hayashi T, Sato T, Miyanishi K, Sagawa T, Sato Y, Takimoto R, Takayama T, Kato J, Gasa S, Sakai H, Tsuchida E, Ikebuchi K, Hamada H, Niitsu Y (2008) Ex vivo large-scale generation of human red blood cells from cord blood CD34(+) cells by co-culturing with macrophages. Int J Hematol 87:339–350

    Article  PubMed  Google Scholar 

  • Giarratana MC, Kobari L, Lapillonne H, Chalmers D, Kiger L, Cynober T, Marden MC, Wajcman H, Douay L (2005) Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol 23:69–74

    Article  PubMed  CAS  Google Scholar 

  • Giarratana MC, Marie T, Darghouth D, Douay L (2013) Biological validation of bio-engineered red blood cell productions. Blood Cells Mol Dis 50:69–79

    Article  PubMed  CAS  Google Scholar 

  • Hanna JH, Saha K, Jaenisch R (2010) Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143:508–525

    Article  PubMed  CAS  Google Scholar 

  • Hattangadi SM, Wong P, Zhang LB, Flygare J, Lodish HF (2011) From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood 118:6258–6268

    Article  PubMed  CAS  Google Scholar 

  • Higgs DR, Engel JD, Stamatoyannopoulos G (2012) Thalassaemia. Lancet 379:373–383

    Article  PubMed  CAS  Google Scholar 

  • Hiroyama T, Miharada K, Sudo K, Danjo I, Aoki N, Nakamura Y (2008) Establishment of mouse embryonic stem cell-derived erythroid progenitor cell lines able to produce functional red blood cells. PLoS One 3:e1544

    Article  PubMed  Google Scholar 

  • Hiroyama T, Miharada K, Sudo K, Danjo I, Aoki N, Nakamura Y (2013) Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells. PLoS One 8:59890

    Article  Google Scholar 

  • Housler GJ, Miki T, Schmelzer E, Pekor C, Zhang XK, Kang L, Voskinarian-Berse V, Abbot S, Zeilinger K, Gerlach JC (2012) Compartmental hollow fiber capillary membrane-based bioreactor technology for in vitro studies on red blood cell lineage direction of hematopoietic stem cells. Tissue Eng Part C Methods 18:133–142

    Article  PubMed  CAS  Google Scholar 

  • Hu KJ, Yu JY, Suknuntha K, Tian SL, Montgomery K, Choi KD, Stewart R, Thomson JA, Slukvin II (2011) Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood 117:E109–E119

    Article  PubMed  CAS  Google Scholar 

  • Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol Med 6:88–95

    PubMed  CAS  Google Scholar 

  • Ji P, Murata-Hori M, Lodish HF (2011) Formation of mammalian erythrocytes: chromatin condensation and enucleation. Trends Cell Biol 21:409–415

    Article  PubMed  CAS  Google Scholar 

  • Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 98:10716–10721

    Article  PubMed  CAS  Google Scholar 

  • Keerthivasan G, Small S, Liu H, Wickrema A, Crispino JD (2010) Vesicle trafficking plays a novel role in erythroblast enucleation. Blood 116:3331–3340

    Article  PubMed  CAS  Google Scholar 

  • Keerthivasan G, Liu H, Gump JM, Dowdy SF, Wickrema A, Crispino JD (2012) A novel role for survivin in erythroblast enucleation. Haematologica 97:1471–1479

    Article  PubMed  CAS  Google Scholar 

  • Kim HO, Baek EJ (2011) Red blood cell engineering in stroma and serum/plasma-free conditions and long term storage. Tissue Eng Part A 18:117–126

    Article  PubMed  Google Scholar 

  • Kim JB, Zaehres H, Wu GM, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M, Scholer HR (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454:646–650

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476

    Article  PubMed  CAS  Google Scholar 

  • Lacoste A, Berenshteyn F, Brivanlou AH (2009) An efficient and reversible transposable system for gene delivery and lineage-specific differentiation in human embryonic stem cells (vol 5, pg 332, 2009). Cell Stem Cell 5:568–568

    Article  CAS  Google Scholar 

  • Lahoti V, Murphy W, Al Rubeai M (2012) Mathematical approach for the optimal expansion of erythroid progenitors in monolayer culture. J Biotechnol 161:308–319

    Article  PubMed  CAS  Google Scholar 

  • Leberbauer C, Boulme F, Unfried G, Huber J, Beug H, Mullner EW (2005) Different steroids co-regulate long-term expansion versus terminal differentiation in primary human erythroid progenitors. Blood 105:85–94

    Article  PubMed  CAS  Google Scholar 

  • Lengerke C, Grauer M, Niebuhr NI, Riedt T, Kanz L, Park IH, Daley GQ (2009) Hematopoietic development from human induced pluripotent stem cells. Ann N Y Acad Sci 1176:219–227

    Article  PubMed  CAS  Google Scholar 

  • Lin TX, Ambasudhan R, Yuan X, Li WL, Hilcove S, Abujarour R, Lin XY, Hahm HS, Hao E, Hayek A, Ding S (2009) A chemical platform for improved induction of human iPSCs. Nat Methods 6:805–808

    Article  PubMed  CAS  Google Scholar 

  • Lu L, Broxmeyer HE (1985) Comparative influences of phytohemagglutinin-stimulated leukocyte conditioned medium, hemin, prostaglandin-E, and low oxygen-tension on colony formation by erythroid progenitor cells in normal human-bone marrow. Exp Hematol 13:989–993

    PubMed  CAS  Google Scholar 

  • Lu SJ, Feng Q, Park JS, Vida L, Lee BS, Strausbauch M, Wettstein PJ, Honig GR, Lanza R (2008) Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood 112:4475–4484

    Article  PubMed  CAS  Google Scholar 

  • McAdams TA, Miller WM, Papoutsakis ET (1998) pH is a potent modulator of erythroid differentiation. Br J Haematol 103:317–325

    Article  PubMed  CAS  Google Scholar 

  • Metcalf D (2007) Concise review: hematopoietic stem cells and tissue stem cells: current concepts and unanswered questions. Stem Cells 25:2390–2395

    Article  PubMed  Google Scholar 

  • Migliaccio G, Di Pietro R, di Giacomo V, Di Baldassarre A, Migliaccio AR, Maccioni L, Galanello R, Papayannopoulou T (2002) In vitro mass production of human erythroid cells from the blood of normal donors and of thalassemic patients. Blood Cells Mol Dis 28:169–180

    Article  PubMed  Google Scholar 

  • Migliaccio G, Sanchez M, Leblanc A, Masiello F, Tirelli V, Migliaccio AR, Najfeld V, Whitsett C (2009) Long-term storage does not alter functionality of in vitro generated human erythroblasts: implications for ex vivo generated erythroid transfusion products. Transfusion 49:2668–2679

    Article  PubMed  Google Scholar 

  • Miharada K, Hiroyama T, Sudo K, Nagasawa T, Nakamura Y (2006) Efficient enucleation of erythroblasts differentiated in vitro from hematopoietic stem and progenitor cells. Nat Biotechnol 24:1255–1256

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, Nakagawa M, Koyanagi M, Tanabe K, Ohnuki M, Ogawa D, Ikeda E, Okano H, Yamanaka S (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27:743–745

    Article  PubMed  CAS  Google Scholar 

  • Muta K, Krantz SB, Bondurant MC, Wickrema A (1994) Distinct roles of erythropoietin, insulin-like growth-factor-I, and stem-cell factor in the development of erythroid progenitor cells. J Clin Invest 94:34–43

    Article  PubMed  CAS  Google Scholar 

  • Muta K, Krantz SB, Bondurant MC, Dai CH (1995) Stem-cell factor retards differentiation of normal human erythroid progenitor cells while stimulating proliferation. Blood 86:572–580

    PubMed  CAS  Google Scholar 

  • Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106

    Article  PubMed  CAS  Google Scholar 

  • Neildez-Nguyen TMA, Wajcman H, Marden MC, Bensidhoum M, Moncollin V, Giarratana MC, Kobari L, Thierry D, Douay L (2002) Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo. Nat Biotechnol 20:467–472

    Article  PubMed  CAS  Google Scholar 

  • Olivier EN, Qiu CH, Velho M, Hirsch RE, Bouhassira EE (2006) Large-scale production of embryonic red blood cells from human embryonic stem cells. Exp Hematol 34:1635–1642

    Article  PubMed  CAS  Google Scholar 

  • O'Malley DP (2007) Benign extramedullary myeloid proliferations. Mod Pathol 20:405–415

    Article  PubMed  Google Scholar 

  • Panzenbock B, Bartunek P, Mapara MY, Zenke M (1998) Growth and differentiation of human stem cell factor erythropoietin-dependent erythroid progenitor cells in vitro. Blood 92:3658–3668

    PubMed  CAS  Google Scholar 

  • Papayannopoulou T, Brice M, Blau CA (1993) Kit ligand in synergy with interleukin-3 amplifies the erythropoietin-independent, globin-synthesizing progeny of normal human burst-forming units-erythroid in suspension-cultures - physiological implications. Blood 81:299–310

    PubMed  CAS  Google Scholar 

  • Peyrard T, Bardiaux L, Krause C, Kobari L, Lapillonne H, Andreu G, Douay L (2011) Banking of pluripotent adult stem cells as an unlimited source for red blood cell production: potential applications for alloimmunized patients and rare blood challenges. Transfus Med Rev 25:206–216

    Article  PubMed  Google Scholar 

  • Pourcher G, Mazurier C, King YY, Giarratana MC, Boehm D, Douay L, Lapillone H (2012) Human fetal liver: an in vitro model of erythropoiesis. Stem Cells Int 2011:10, 405429

    Google Scholar 

  • Puri MC, Nagy A (2012) Concise review: embryonic stem cells versus induced pluripotent stem cells: the game is on. Stem Cells 30:10–14

    Article  PubMed  CAS  Google Scholar 

  • Robin C, Bollerot K, Mendes S, Haak E, Crisan M, Cerisoli F, Lauw I, Kaimakis P, Jorna R, Vermeulen M, Kayser M, van der Linden R, Imanirad P, Verstegen M, Nawaz-Yousaf H, Papazian N, Steegers E, Cupedo T, Dzierzak E (2009) Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development. Cell Stem Cell 5:385–395

    Article  PubMed  CAS  Google Scholar 

  • Rogers HM, Yu XB, Wen J, Smith R, Fibach E, Noguchi CT (2008) Hypoxia alters progression of the erythroid program. Exp Hematol 36:17–27

    Article  PubMed  CAS  Google Scholar 

  • Ronzoni L, Bonara P, Rusconi D, Frugoni C, Libani I, Cappellini MD (2008) Erythroid differentiation and maturation from peripheral CD34(+) cells in liquid culture: cellular and molecular characterization. Blood Cells Mol Dis 40:148–155

    Article  PubMed  CAS  Google Scholar 

  • Sakai H, Sou K, Horinouchi H, Kobayashi K, Tsuchida E (2008) Haemoglobin-vesicles as artificial oxygen carriers: present situation and future visions. J Intern Med 263:4–15

    PubMed  CAS  Google Scholar 

  • Schofield R (1978) Relationship between spleen colony-forming cell and hematopoietic stem-cell – hypothesis. Blood Cells 4:7–25

    PubMed  CAS  Google Scholar 

  • Shiozawa Y, Taichman RS (2012) Getting blood from bone: an emerging understanding of the role that osteoblasts play in regulating hematopoietic stem cells within their niche. Exp Hematol 40:685–694

    Article  PubMed  Google Scholar 

  • Sigvardsson M (2009) New light on the biology and developmental potential of haematopoietic stem cells and progenitor cells. J Intern Med 266:311–324

    Article  PubMed  CAS  Google Scholar 

  • Sood R, Liu P (2012) Novel insights into the genetic controls of primitive and definitive hematopoiesis from zebrafish models. Adv Hematol 2012:830703

    PubMed  Google Scholar 

  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949

    Article  PubMed  CAS  Google Scholar 

  • Stiene-Martin EA, Lotspeich-Steininger CA, Koepke JA (1998) Clinical hematology. Principles, procedures, correlations, 2nd edn. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Sui XW, Tsuji K, Tajima S, Tanaka R, Muraoka K, Ebihara Y, Ikebuchi K, Yasukawa K, Taga T, Kishimoto T, Nakahata T (1996) Erythropoietin-independent erythrocyte production: signals through gp130 and c-kit dramatically promote erythropoiesis from human CD34(+) cells. J Exp Med 183:837–845

    Article  PubMed  CAS  Google Scholar 

  • Szabo E, Rampalli S, Risueno RM, Schnerch A, Mitchell R, Fiebig-Comyn A, Levadoux-Martin M, Bhatia M (2010) Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468:521–526

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  • Till JE, McCulloch EA (1961) Direct measurement of radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213

    Article  PubMed  CAS  Google Scholar 

  • Timmins NE, Nielsen LK (2009) Blood cell manufacture: current methods and future challenges. Trends Biotechnol 27:415–422

    Article  PubMed  CAS  Google Scholar 

  • Timmins NE, Nielsen LK (2011) Manufactured RBC – rivers of blood, or an oasis in the desert? Biotechnol Adv 29:661–666

    Article  PubMed  CAS  Google Scholar 

  • Timmins NE, Athanasas S, Gunther M, Buntine P, Nielsen LK (2011) Ultra-high-yield manufacture of red blood cells from hematopoietic stem cells. Tissue Eng Part C Methods 17:1131–1137

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida E, Sou K, Nakagawa A, Sakai H, Komatsu T, Kobayashi K (2009) Artificial oxygen carriers, hemoglobin vesicles and albumin-hemes, based on bioconjugate chemistry. Bioconjug Chem 20:1419–1440

    Article  PubMed  CAS  Google Scholar 

  • Ubukawa K, Guo YM, Takahashi M, Hirokawa M, Michishita Y, Nara M, Tagawa H, Takahashi N, Komatsuda A, Nunomura W, Takakuwa Y, Sawada K (2012) Enucleation of human erythroblasts involves non-muscle myosin IIB. Blood 119:1036–1044

    Article  PubMed  CAS  Google Scholar 

  • US Department of Health and Human Services (2011) Report of the US Department of Health and Human Services. The 2009 national blood collection and utilization survey report. US Department of Health and Human Services, Office of the Assistant Secretary for Health, 2011. US Department of Health and Human Services, Washington, DC

    Google Scholar 

  • Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM (1994) Evidence for a mitotic clock in human hematopoietic stem-cells – loss of telomeric DNA with age. Proc Natl Acad Sci USA 91:9857–9860

    Article  PubMed  CAS  Google Scholar 

  • Vlaski M, Lafarge X, Chevaleyre J, Duchez P, Boiron JM, Ivanovic Z (2009) Low oxygen concentration as a general physiologic regulator of erythropoiesis beyond the EPO-related downstream tuning and a tool for the optimization of red blood cell production ex vivo. Exp Hematol 37:573–584

    Article  PubMed  CAS  Google Scholar 

  • von Lindern M, Zauner W, Mellitzer G, Steinlein P, Fritsch G, Huber K, Lowenberg B, Beug H (1999) The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood 94:550–559

    Google Scholar 

  • Wang LD, Wagers AJ (2011) Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol 12:643–655

    Article  PubMed  CAS  Google Scholar 

  • Wang JCY, Doedens M, Dick JE (1996) Primitive human hematopoietic cells are enriched in cord blood compared to normal adult bone marrow or G-CSF-mobilized peripheral blood. Blood 88:2500–2500

    Google Scholar 

  • World Health Organization (2011) Global database on blood safety report 2011. World Health Organization

    Google Scholar 

  • Wu H, Klingmuller U, Acurio A, Hsiao JG, Lodish HF (1997) Functional interaction of erythropoietin and stem cell factor receptors is essential for erythroid colony formation. Proc Natl Acad Sci USA 94:1806–1810

    Article  PubMed  CAS  Google Scholar 

  • Yakubov E, Rechavi G, Rozenblatt S, Givol D (2010) Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochem Biophys Res Commun 394:189–193

    Article  PubMed  CAS  Google Scholar 

  • Yu JY, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  • Yusa K, Rad R, Takeda J, Bradley A (2009) Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6:363–369

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Al-Rubeai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Browne, S.M., Al-Rubeai, M. (2014). Blood Cell Bioprocessing: The Haematopoietic System and Current Status of In-Vitro Production of Red Blood Cells. In: Al-Rubeai, M., Naciri, M. (eds) Stem Cells and Cell Therapy. Cell Engineering, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7196-3_5

Download citation

Publish with us

Policies and ethics