Skip to main content

Superfluidity: How Quantum Mechanics Became Visible

  • Chapter
  • First Online:
History of Artificial Cold, Scientific, Technological and Cultural Issues

Part of the book series: Boston Studies in the Philosophy and History of Science ((BSPS,volume 299))

Abstract

In December 1937, J.F. Allen and A.D. Misener in Cambridge and simultaneously P. Kapitsa in Moscow discovered the superfluidity of liquid helium. In March 1938, F. London proposed that superfluidity was a consequence of a quantum phenomenon called “Bose-Einstein condensation” (BEC). This was a major step in Physics because, if London was right – and it is now accepted that he was right – quantum mechanics had to be at play at the macroscopic scale of our visible world, not only at the microscopic scale of atoms or molecules.

This major discovery was made possible by the progress of low temperature techniques, especially the construction of helium liquefiers. London’s ideas were soon developed by L. Tisza who invented the “two fluid model” to explain most of the helium properties that were known at that time. In 1941, L.D. Landau made further progress in the understanding of superfluidity but, surprisingly, he never agreed with London and Tisza on the possible relation of superfluidity to BEC. Among these five great physicists, only Landau and Kapitsa received a Nobel Prize.

The history of this discovery is quite interesting because it illustrates the way how modern science progresses, especially how controversies could be solved, also because this discovery was made at a time when the world was torn apart by conflicts and wars. Seventy years later, superfluidity has been found in several other quantum fluids. It appears as closely related to superconductivity, another macroscopic property of quantum matter, and superfluid helium can be used to cool down matter at an industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, J.F. 1988. The beginning of superfluidity. Physics World 1: 29–31.

    Google Scholar 

  • Allen, J.F., and J.M.G. Armitage. 1982. VHS movie, 5th ed. St Andrews: St Andrews University.

    Google Scholar 

  • Allen, J.F., and A.D. Misener. 1938. Flow of liquid helium II. Nature 141: 75–78.

    Article  Google Scholar 

  • Allen, J.F., and H. Jones. 1938. New phenomena connected with heat flow in helium II. Nature 141: 243–244.

    Article  Google Scholar 

  • Allen, J.F., R. Peierls, and Z. Uddin. 1937. Heat conduction in liquid helium. Nature 140: 62–63.

    Article  Google Scholar 

  • Amo, A., S. Pigeon, D. Sanvitto, V.G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Leménager, R. Houdré, E. Giacobino, C. Ciuti, and A. Bramati. 2011. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332: 1167–1170.

    Article  Google Scholar 

  • Anderson, P.W. 1969. Interpretation of the Johnston-King experiment on evaporation of liquid He. Physics Letters A 29: 563–564.

    Article  Google Scholar 

  • Andronikashvili, F.L. 1989. Reflections on liquid helium. New York: American Institute of Physics.

    Google Scholar 

  • Balibar, S., J. Buechner, B. Castaing, C. Laroche, and A. Libchaber. 1978. Experiments on superfluid 4He evaporation. Physical Review B 18: 3096–3104.

    Article  Google Scholar 

  • Balibar, S. 2007. The discovery of superfluidity. Journal of Low Temperature Physics 146: 441–470.

    Article  Google Scholar 

  • Balibar, S. 2010. The enigma of supersolidity. Nature 464: 176–182.

    Article  Google Scholar 

  • Bardeen, J., L.N. Cooper, and J.R. Schrieffer. 1957a. Microscopic theory of superconductivity. Physical Review 106: 162–164.

    Article  Google Scholar 

  • Bardeen, J., L.N. Cooper, and J.R. Schrieffer. 1957b. Theory of superconductivity. Physical Review 108: 1175–1204.

    Article  Google Scholar 

  • Beamish, J.R., A. Fefferman, A. Haziot, X. Rojas, and S. Balibar. 2012. Elastic effects in torsional oscillators containing solid helium. Physical Review B 85: 120501.

    Article  Google Scholar 

  • Bogoliubov, N.N. 1947. On the theory of superfluidity. Journal of Physics USSR 11: 23.

    Google Scholar 

  • Bose, S.N. 1924. Planck’s Gesetz und Lichtquantenhypothese. Zeitschrift für Physik 26: 178–181.

    Article  Google Scholar 

  • Burton, E.F. 1935. Viscosity of helium I and helium II. Nature 135: 265.

    Article  Google Scholar 

  • Brown, M., and A.F.G. Wyatt. 1990. The surface boundary conditions for quantum evaporation in 4He. Journal of Physics: Condensed Matter 2: 5025–5046.

    Article  Google Scholar 

  • Caupin, F., and S. Balibar. 2001. Cavitation pressure in liquid helium. Physical Review B 64: 064507. 1–10.

    Article  Google Scholar 

  • Chamel, N. 2011. A stellar superfluid. Physics 4: 14.

    Article  Google Scholar 

  • Cornell, E.A., and C.E. Wieman. 2002. Nobel lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Reviews of Modern Physics 74: 875. For a review, see the Nobel lecture.

    Article  Google Scholar 

  • Dahl, P.F. 1993. Superconductivity, its historical roots and development from mercury to the ceramic oxides. New York: American Institute of Physics.

    Google Scholar 

  • Daunt, J.G., and K. Mendelssohn. 1938. Transfer of helium II on glass. Nature 141: 911–912.

    Article  Google Scholar 

  • Donnelly, R. 1995. The discovery of superfluidity. Physics Today 48: 30.

    Article  Google Scholar 

  • Einstein, A. 1924. Quantentheorie des einatomigen idealen Gases I. Sitzungsberichte Berlin Akad 22: 261–267.

    Google Scholar 

  • Einstein, A. 1925. Quantentheorie des einatomigen idealen Gases II. Sitzungsberichte Berlin Akad 1: 3–14.

    Google Scholar 

  • Feynman, R.P. 1955. Application of quantum mechanics to liquid helium. In Progress in low temperature physics, vol. 1, ed. C.G. Gorter, 17–53. Amsterdam: North Holland.

    Google Scholar 

  • Fixsen, D.J. 2009. The temperature of the cosmic microwave background. The Astrophysical Journal 707: 916–920.

    Article  Google Scholar 

  • Gavroglu, K. 1995. Fritz London: A scientific biography. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Gorelik, G.E. August 1997. The top secret life of Lev Landau. Scientific American 277(2): 72–77.

    Article  Google Scholar 

  • Griffin, A. 1995. A brief history of our understanding of BEC: From Bose to Beliaev. In Proceedings of the International School of Physics, ed. E. Fermi, M. Inguscio, S. Stringari, and C.E. Wieman, 1–12. Amsterdam: IOS press.

    Google Scholar 

  • Griffin, A. 2005. John C. McLennan and his pioneering research on superfluid helium. Physics in Canada 61: 33–40.

    Google Scholar 

  • Griffin, A. 2008. Superfluidity: Three people, two papers, on prize. Physics World 21(8): 27–30.

    Google Scholar 

  • Haziot, A., X. Rojas, A.D. Fefferman, J.R. Beamish, and S. Balibar. 2013. The giant plasticity of a quantum crystal. Physical Review Letters 110: 035301.

    Article  Google Scholar 

  • Heitler, W., and F. London. 1927. Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Zeitschrift für Physik 44: 455–472.

    Article  Google Scholar 

  • Henshaw, D.G., and A.D.B. Woods. 1961. Modes of atomic motions in liquid helium by inelastic scattering of neutrons. Physics Review 121: 1266–1274.

    Article  Google Scholar 

  • Hope, F.R., M.J. Baird, and A.F.G. Wyatt. 1984. Quantum evaporation from liquid 4He by rotons. Physical Review Letters 52: 1528–1531.

    Article  Google Scholar 

  • Horner, H. 1972. Scattering function S (Q, ω) for solid helium. Physical Review Letters 29: 556–558.

    Article  Google Scholar 

  • Kamerlingh Onnes, H. 1908. The liquefaction of helium. Communications from the Physical Laboratory at the University of Leiden 108: 3.

    Google Scholar 

  • Kamerlingh Onnes, H. 1911. The disappearance of the resistance of mercury. Communications from the Physical Laboratory at the University of Leiden. 122b and 124c.

    Google Scholar 

  • Kapitsa, P. 1938. Viscosity of liquid helium below the λ-point. Nature 141: 74.

    Article  Google Scholar 

  • Kapitsa, P.L. 1941. Heat transfer and superfluidity in helium II. Physics Review 60: 354.

    Article  Google Scholar 

  • Keesom, W.H., and M. Wolfke. 1927. Two different liquid states of helium. Communications from the Physical Laboratory at the University of Leiden 190b: 17–22.

    Google Scholar 

  • Keesom, W.H., and J.N. van der Ende. 1930. Proceedings of the Royal Academy of Amsterdam 33: 24.

    Google Scholar 

  • Keesom, W.H., and A.P. Keesom. 1932. On the anomaly of the specific heat of liquid helium. Communications from the Physical Laboratory at the University of Leiden 221d: 19–26.

    Google Scholar 

  • Keesom, W.H., and A.P. Keesom. 1936. On the heat conductivity of liquid helium. Physica 3: 359–360.

    Article  Google Scholar 

  • Ketterle, W. 2002. Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser. Reviews of Modern Physics 74: 1131–1151.

    Article  Google Scholar 

  • Kim, E., and M.H.W. Chan. 2004a. Probable observation of a supersolid helium phase. Nature 427: 225–227.

    Article  Google Scholar 

  • Kim, E., and M.H.W. Chan. 2004b. Observation of superflow in solid helium. Science 305: 1941–1944.

    Article  Google Scholar 

  • Kuerti, N., B.V. Rollin, and F. Simon. 1936. Preliminary experiments on temperature equilibria at very low temperatures. Physica 3: 266–274.

    Article  Google Scholar 

  • Landau, L.D. 1941a. Theory of superfluidity of helium II. Physics Review 60: 356–358.

    Article  Google Scholar 

  • Landau, L.D. 1941b. The theory of superfluidity of Helium II. Journal of Physics (USSR) 5: 71–90.

    Google Scholar 

  • Landau, L.D. 1947. On the theory of superfluidity of helium II. Journal of Physics (USSR) 11: 91.

    Google Scholar 

  • Landau, L.D. 1957. The theory of a Fermi liquid. Soviet Physics JETP 3: 920–925.

    Google Scholar 

  • Leggett, A.J. 1972. Interpretation of recent results on He3 below 3 mK: A new liquid phase? Physical Review Letters 29: 1227–1230.

    Article  Google Scholar 

  • Leggett, A.J. 2004. Nobel lecture: Superfluid 3He: The early days as seen by a theorist. Reviews of Modern Physics 76: 999–1011.

    Article  Google Scholar 

  • London, F. 1935. Macroscopical interpretation of supraconductivity. Proceedings of the Royal Society A 152: 24–34.

    Article  Google Scholar 

  • London, F. 1936. On condensed helium at absolute zero. Proceedings of the Royal Society A 153: 576–583.

    Article  Google Scholar 

  • London, F. 1938a. The λ-phenomenon of liquid helium and the Bose-Einstein degeneracy. Nature 141: 643–644.

    Article  Google Scholar 

  • London, F. 1938b. On the Bose-Einstein condensation. Physics Review 54: 947.

    Article  Google Scholar 

  • London, H. 1938c. A ponderomotive effect associated with the flow of heat through liquid helium II. Nature 142: 612.

    Article  Google Scholar 

  • London, H. 1939. Thermodynamics of the thermomechanical effect of liquid HeII. Proceedings of the Royal Society A 171: 484–496.

    Article  Google Scholar 

  • London, F. 1947. The present state of the theory of liquid helium. In International conference on fundamental particles and low temperatures, 1. Cambridge: Taylor and Francis. Reprinted by R. Donnelly, Department of Physics, University of Oregon (1993).

    Google Scholar 

  • London, F. 1950. Superfluids I. New York: Wiley.

    Google Scholar 

  • London, F., and H. London. 1935. Supraleitung und Diamagnetismus. Physica 2: 341–354.

    Article  Google Scholar 

  • Madison, K.W., F. Chevy, W. Wohlleben, and J. Dalibard. 2000. Vortex formation in a stirred Bose-Einstein condensate. Physical Review Letters 84: 806–809.

    Article  Google Scholar 

  • Maris, H.J. 1994. Nucleation of bubbles on quantized vortices in helium-4. Journal of Low Temperature Physics 94: 125–144.

    Article  Google Scholar 

  • Maris, H.J. 1995. Theory of quantum nucleation of bubbles in liquid helium. Journal of Low Temperature Physics 98: 403–424.

    Article  Google Scholar 

  • Matricon, J., and G. Waysand. 2003. The cold wars: A history of superconductivity. New Brunswick: Rutgers University Press (Originally published as La guerre du froid: Une histoire de la superconductivite, 1994, Paris: Seuil).

    Google Scholar 

  • McLennan, J.C., H.D. Smith, and J.O. Wilhelm. 1932. The scattering of light by liquid helium. Philosophical Magazine 14: 161–167.

    Google Scholar 

  • Mendelssohn, K. 1964. Prewar work on superconductivity as seen from Oxford. Reviews of Modern Physics 36: 7–11.

    Article  Google Scholar 

  • Meyer, H. 2005. Fritz London aux Etats-Unis 1938–1954. Communication at the conference “Quantique… mais macroscopique, Hommage à Fritz London, physicien en exil”, Institut Henri Poincaré, Paris, 11 mai 2005.

    Google Scholar 

  • Migdal, A.B. 1959. Superfluidity and the moments of inertia of nuclei. Nuclear Physics 13: 655–674.

    Article  Google Scholar 

  • Misener, A.D., J.O. Wilhelm, and A.R. Clark. 1935. The viscosity of liquid helium. Proceedings of the Royal Society A 151: 342–347.

    Article  Google Scholar 

  • Nozières, P. 2004. Is the roton in superfluid 4He the ghost of a Bragg spot? Journal of Low Temperature Physics 137: 45–67.

    Article  Google Scholar 

  • Onsager, L. 1949. Nuovo Cimento 6, Suppl. 2, 249 (discussion on the article “The two fluid model of Helium II” by C.J. Gorter).

    Google Scholar 

  • Osborne, D.W., B. Weinstock, and B.M. Abraham. 1949. Comparison of the flow of isotopically pure liquid He3 and He4. Physics Review 75: 988.

    Article  Google Scholar 

  • Osheroff, D.D., R.C. Richardson, and D.M. Lee. 1972. Evidence for a new phase of solid He. Physical Review Letters 28: 885–888.

    Article  Google Scholar 

  • Osheroff, D.D. 1997. Superfluidity in 3He: Discovery and understanding. Reviews of Modern Physics 69: 667–681. Nobel lecture.

    Article  Google Scholar 

  • Païs, A. 1982. Subtle is the Lord, 432. Oxford: Clarendon Press.

    Google Scholar 

  • Penrose, O. 1951. On the quantum mechanics of helium II. Philosophical Magazine 42: 1373–1377.

    Google Scholar 

  • Penrose, O., and L. Onsager. 1956. Bose-Einstein condensation and liquid helium. Physics Review 104: 576–584.

    Article  Google Scholar 

  • Peshkov, V.P. 1946. Determination of the velocity of propagation of the second sound in helium II. Report of an international conference on fundamental particles and low temperature, Cavendish Laboratory, Cambridge 22–27 July 1946, p. 19 (Taylor & Francis, London 1947). Reprinted by R. Donnelly, Department of Physics, University of Oregon (1993).

    Google Scholar 

  • Peshkov, V.P. 1948. Skorost 2nd Zvuka OT 1,3 do 1.03-Degrees-K. Zh Eksp Teor Fiz 18: 951.

    Google Scholar 

  • Pitaevskii, L. 1992. 50 years of Landau’s theory on superfluidity. Journal of Low Temperature Physics 87: 127–135.

    Article  Google Scholar 

  • Rollin, B.V., and F. Simon. 1939. On the “film” phenomenon of liquid helium II. Physica 6: 219–230.

    Article  Google Scholar 

  • Rubinin, P.E. 1997. The discovery of superfluidity. Letters and documents. Physics-Uspekhi 40: 1249–1260.

    Article  Google Scholar 

  • Shoenberg, D. 1994. Kapitsa in Cambridge and Moscow. Physics Uspekhi 37: 1213–1216 (Kapitsa centenary symposium at the Cavendish laboratory, Cambridge, 8 July 1994).

    Google Scholar 

  • Simon, F. 1934. Behaviour of condensed helium near absolute zero. Nature 133: 529.

    Article  Google Scholar 

  • Teller, E. 1998. Science and morality. Science 280: 1200–1201.

    Article  Google Scholar 

  • Tisza, L. 1938a. Transport phenomena in helium II. Nature 141: 913.

    Article  Google Scholar 

  • Tisza, L. 1938b. Sur la supraconductibiité thermique de l’hélium II liquide et la statistique de Bose-Einstein. Comptes Rendus de l'Académie des Sciences (Paris) 207: 1035–1037.

    Google Scholar 

  • Tisza, L. 1938c. La viscosité de l’hélium liquid et la statistique de Bose-Einstein. Comptes Rendus de l'Académie des Sciences (Paris) 207: 1186.

    Google Scholar 

  • Tisza, L. 1940a. Sur la théorie des liquides quantiques. Application à l’hélium liquide I. Journal of Physique et le Radium 1(5): 164–172.

    Article  Google Scholar 

  • Tisza, L. 1940b. Sur la théorie des liquides quantiques. Application à l’hélium liquide II. Journal of Physique et le Radium 1(8): 350–358.

    Article  Google Scholar 

  • Tisza, L. 1991. The history of the two-fluid concept. Centenary meeting of the Eötvös Society, Budapest, Hungary, 19 Oct 1991.

    Google Scholar 

  • Tisza, L. 2000. E-mail to S. Balibar, 12 Sept 2000.

    Google Scholar 

  • Tisza, L. 2009a. Adventures of a theoretical physicist, part I: Europe. Physics in Perspective 11(1): 46–97.

    Article  Google Scholar 

  • Tisza, L. 2009b. Adventures of a theoretical physicist, part II: America. Physics in Perspective 11(2): 120–168.

    Article  Google Scholar 

  • Tucker, M.A.H., and A.F.G. Wyatt. 1999. Direct evidence for R – Rotons having antiparallel momentum and velocity. Science 283: 1150–1152.

    Article  Google Scholar 

  • Uhlenbeck, G.E. 1927. Over Statistische Methoden in de Theorie der Quanta. PhD dissertation, University of Leiden.

    Google Scholar 

  • van Delft, D. 2005. Heike Kamerlingh Onnes. Een biografie. Amsterdam: Bakker (to be translated in English).

    Google Scholar 

  • Vinen, W.F. 1961. Detection of single quanta of circulation in liquid helium II. Proceedings of the Royal Society A 260: 218–236.

    Article  Google Scholar 

  • Wilks, J. 1967. The properties of liquid and solid helium. Oxford: Clarendon Press.

    Google Scholar 

  • Wolfke, M., and W.H. Keesom. 1927. Über zwei verschiedene Flüssigkeitszustände. Proceedings of E Amsterdam 31: 81.

    Google Scholar 

  • Yarmchuk, E.J., M.J.V. Gordon, and R.E. Packard. 1979. Observation of stationary vortex arrays in rotating superfluid helium. Physical Review Letters 43: 214–217.

    Article  Google Scholar 

  • Zwierlein, M.W., C.A. Stan, C.H. Schunck, S.M.F. Raupach, A.J. Kerman, and W. Ketterle. 2004. Condensation of Pairs of fermionic atoms near a Feshbach resonance. Physical Review Letters 92: 120403.

    Article  Google Scholar 

Download references

Acknowledgements

I acknowledge support from the ERC grant AdG247258-SUPERSOLID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Balibar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Balibar, S. (2014). Superfluidity: How Quantum Mechanics Became Visible. In: Gavroglu, K. (eds) History of Artificial Cold, Scientific, Technological and Cultural Issues. Boston Studies in the Philosophy and History of Science, vol 299. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7199-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7199-4_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7198-7

  • Online ISBN: 978-94-007-7199-4

  • eBook Packages: Humanities, Social Sciences and LawHistory (R0)

Publish with us

Policies and ethics