Skip to main content

Stochastic Approach for Enzyme Reaction in Nano Size via Different Algorithms

  • Conference paper
  • First Online:
Chemistry: The Key to our Sustainable Future

Abstract

Stochastic simulations have been done for enzyme kinetics reaction with Michaelis-Menten mechanism in low population number. Gillespie and Poisson algorithms have been used for investigation of population number and fluctuation population around their mean values as a function of time. Our result shows that equilibrium time for population dynamics via Poisson algorithm is smaller than Gillespie algorithm. Variations of average population number versus time for all species have the following order: deterministic approach (mean fields) > Gillespie > Poisson. There is asymptotic limit for fluctuation population as a function of time via Poisson algorithm but there is not such trend for fluctuation population via Gillespie algorithm. There is a maximum for fluctuation population for all species for kinetics reaction with Michaelis-Menten mechanism as a function of time via Gillespie algorithm. The stochastic approach has also been used for horse liver alcohol dehydrogenase which catalyses the NAD \( ^{+} \) (nicotinamide heterocyclic ring) oxidation of ethanol to acetaldehyde and three kinds of third order reactions. Probability distribution function and fluctuation population for reactants are calculated as a function of time. Increasing a variety of species for third order reactions leads to decrease of coefficient variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jilbert AR, Miller DS, Scougall CA, Turnbull H, Burrell C (1996) Kinetics of duck hepatitis B virus infection following low dose virus inoculation: one virus DNA genome is infectious in neonatal ducks. Virology 226:338–345

    Article  CAS  Google Scholar 

  2. Srivastava R, You L, Summersy J, Yin J (2002) Stochastic vs. deterministic modeling of intracellular viral kinetics. J Theor Biol 218:309–321

    Article  CAS  Google Scholar 

  3. Blake WJ, Kærn M, Cantor CR, Collins JJ (2003) Noise in eukaryotic gene expression. Nature 422:633–637

    Article  CAS  Google Scholar 

  4. Elowitz MB, Levine J, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1186

    Article  CAS  Google Scholar 

  5. Gillespie T (2000) The chemical Langevin equation. J Chem Phys 113:297–306

    Article  CAS  Google Scholar 

  6. Peeters P, Nicolis G (1992) Intrinsic fluctuations in chaotic dynamics. Phys A 188:426–435

    Article  CAS  Google Scholar 

  7. Geysermans P, Nicolis G (1993) Thermodynamic fluctuations and chemical chaos in a well-stirred reactor: a master equation analysis. J Chem Phys 99:8964–8969

    Article  CAS  Google Scholar 

  8. Matias MA, Güémez J (1995) On the effects of molecular fluctuations on models of chemical chaos. J Chem Phys 102:1597–1606

    Article  CAS  Google Scholar 

  9. Wang H, Li Q (1998) Master equation analysis of deterministic chemical chaos. J Chem Phys 108:7555–7559

    Article  CAS  Google Scholar 

  10. McQuarrie DA (1963) Kinetics of small systems I. J Chem Phys 38:433–436

    Article  CAS  Google Scholar 

  11. McQuarrie DA, Jachimowski CJ, Russell ME (1964) Kinetics of small systems II. J Chem Phys 40:2914–2921

    Article  CAS  Google Scholar 

  12. Zheng Q, Ross J (1991) Comparison of deterministic and stochastic kinetics for nonlinear systems. J Chem Phys 94:3644–3648

    Article  CAS  Google Scholar 

  13. Erdi P, Toth J (1989) Mathematical models of chemical reactions: theory and applications of deterministic and stochastic models. Princeton University Press, Princeton

    Google Scholar 

  14. Mavelli F, Piotto S (2006) Stochastic simulations of homogeneous chemically reacting systems. J Mol Struc Theochem 771:55–64

    Article  CAS  Google Scholar 

  15. Gomes JANF (1984) Classical dynamics stochastic theories of chemical reactions. J Mol Struc Theochem 107:139–155

    Article  Google Scholar 

  16. Qian J, Elson EL (2002) Single-molecule enzymology: stochastic Michaelis–Menten kinetics. Biophys Chem 101:565–576

    Article  Google Scholar 

  17. Armbruster D, Nagy JD, van de Rijt EAF, Rooda JE (2009) Dynamic simulations of single-molecule enzyme networks. J Phys Chem B 113:5537–5544

    Article  CAS  Google Scholar 

  18. Kou SC, Cherayil BJ, Min W, English BP, Xie XS (2005) Single-molecule Michaelis-Menten equations. J Phys Chem B 109:19068–19081

    Article  CAS  Google Scholar 

  19. Mathews CK, van Holde KE, Ahern KG (1999) Biochemistry, 3rd edn. Prentice Hall Publ. Co., San Fransisco

    Google Scholar 

  20. McQuarrie DA (1967) Stochastic approach to chemical kinetics. Methuen, London

    Google Scholar 

  21. Darvey IG, Ninham BW, Staff PJ (1996) Stochastic models for second‐order chemical reaction kinetics. The equilibrium state. J Chem Phys 45:2145–2155

    Article  Google Scholar 

  22. Van Kampen NG (1992) Stochastic processes in physics and chemistry. Elsevier, Amsterdam

    Google Scholar 

  23. Steinfeld JI, Francisco JS, Hase WL (1998) Chemical kinetics and dynamics. Upper Saddle River, Prentice Hall Publ. Co., San Fransisco

    Google Scholar 

  24. Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22:403–434

    Article  CAS  Google Scholar 

  25. Gillespie DT (1992) A rigorous derivation of the chemical master equation. Phys A 188:404–425

    Article  CAS  Google Scholar 

  26. Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55

    Article  CAS  Google Scholar 

  27. Gillespie DT (2001) Approximate accelerated stochastic simulation of chemically reacting systems. J Chem Phys 115:1716–1733

    Article  CAS  Google Scholar 

  28. Rao V, Arkin P (2002) Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm. J Chem Phys 118:4999–5010

    Article  Google Scholar 

  29. Gibson MA, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem A 104:1876–1889

    Article  CAS  Google Scholar 

  30. Li W, Zhao Y, Wang Z-Q, Ju C-G, Feng Y-L, Zhang J-L (2010) Theoretical study and rate constants calculations of hydrogen abstraction reactions CF3CHCl2 + F and CF3CHClF + F. J Mol Struc Theochem 959:101–105

    Article  Google Scholar 

  31. Lu RH, Li QS, Zhang SW, Kang LJ (2004) Direct DFT dynamics study of the addition reaction CF2 = CHF + H → Product. J Mol Struc Theochem 685:147–154

    Article  Google Scholar 

  32. Resat H, Wiley HS, Dixon DA (2001) Probability-weighted dynamic Monte Carlo method for reaction kinetics simulations. J Phys Chem B 105:11026–11034

    Article  CAS  Google Scholar 

  33. Rigler R (1995) Fluorescence correlations, single molecule detection and large number screening. Applications in biotechnology. J Biotechnol 41:177–186

    Article  CAS  Google Scholar 

  34. Turner TE, Schnell S, Burrage K (2004) Stochastic approaches for modeling in vivo reactions. Comput Biol Chem 28:165–178

    Article  CAS  Google Scholar 

  35. Bugg T (1997) An introduction to enzyme and coenzyme chemistry. Blackwell Science, London

    Google Scholar 

Download references

Acknowledgements

We are thankful to the Computational and Theoretical Physical Chemistry Research Center of Razi University and we wish to acknowledge Mr. Mohammad Reza Poopari for useful suggestion and continued support on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Taherkhani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Taherkhani, F., Ranjbar, S. (2014). Stochastic Approach for Enzyme Reaction in Nano Size via Different Algorithms. In: Gupta Bhowon, M., Jhaumeer-Laulloo, S., Li Kam Wah, H., Ramasami, P. (eds) Chemistry: The Key to our Sustainable Future. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7389-9_14

Download citation

Publish with us

Policies and ethics