Skip to main content

Ground GNSS Ionosphere Sounding

  • Chapter
  • First Online:
GNSS Remote Sensing

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 19))

  • 3626 Accesses

Abstract

Ionospheric delay will bring errors for GNSS navigation and positioning when the electromagnetic wave signal goes through the earth’s ionosphere from satellites to receivers. The amount of ionospheric delay of GNSS varies from a few meters to decades of meters, but could reach more than decades of meters during severe ionosphere storms. In contrast, the GNSS ionospheric delay may provide some useful information on the ionosphere, e.g. the total electron content (TEC). In this chapter, the theory and methods of ground-based GNSS ionospheric sounding are introduced, including vertical TEC, differential code biases, 2-D and 3-D ionospheric mapping. In addition, some applications are presented and discussed, e.g., GNSS TEC climatology, solar flare and storms response and co-seismic ionospheric behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afraimovich E, Ding F, Kiryushkin V, Astafyeva E, Jin SG, Sankov V (2010) TEC response to the 2008 Wenchuan earthquake in comparison with other strong earthquakes. Int J Remote Sens 31(13):3601–3613. doi:10.1080/01431161003727747

    Article  Google Scholar 

  • Austen JR, Franke SG, Liu CH (1988) Ionospheric imaging using computerized tomography. Radio Sci 23:299–307

    Article  Google Scholar 

  • Bassiri S, Hajj GA (1993) Higher-order ionospheric effects on the global positioning systems observables and means of modeling them. Manuscr Geodetica 18:280–289

    Google Scholar 

  • Bhonsle RV, Da Rosa AV, Garriott OK (1965) Measurement of total electron content and the equivalent slab thickness of the mid latitude ionosphere. Radio Sci 69(7):929–939

    Google Scholar 

  • Bilitza D (2001) International reference ionosphere 2000. Radio Sci 36:261–275

    Article  Google Scholar 

  • Calais E, Minster JB (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge Earthquake. Geophys Res Lett 22(9):1045–1048

    Article  Google Scholar 

  • Feng D, Herman BM (1999) Remotely sensing the Earth’s atmosphere using the Global Positioning System (GPS)- The GPS/MET data analysis. J Atmos Ocean Technol 16:989–1002

    Article  Google Scholar 

  • Gordon R, Bender R, Therman G (1970) Algebraic reconstruction techniques (ART) for three dimensional electron microscopy and X-ray photography. J Theor Biol 29:471–481

    Article  Google Scholar 

  • Huang YN (1983) Some result of ionospheric slab thickness observations at Lunping. J Geophys Res 88:5517–5522

    Article  Google Scholar 

  • Huang C-Y, Kuo Y-H, Chen S-H, Vandenberghe F (2005) Improvements in typhoon forecasts with assimilated GPS occultation refractivity. Weather Forecast 20:931–953

    Article  Google Scholar 

  • Jaychandran B, Krishnankutty T, Gulyaeva T (2004) Climatology of ionospheric slab thickness. Ann Geophys 22:25–33

    Article  Google Scholar 

  • Jin R, Jin SG (2013) Secular variations and fluctuations of GPS TEC over Antarctica. In: Proceeding of IAU symposium 288, Beijing, China, 20–31 Aug 2012, pp 322–325. doi:10.1017/S1743921312017139

  • Jin SG, Park J (2007) GPS ionospheric tomography: a comparison with the IRI-2001 model over South Korea. Earth Planets Space 59(4):287–292

    Google Scholar 

  • Jin SG, Wang J, Zhang H, Zhu W (2004) Real-time monitoring and prediction of the total ionospheric electron content by means of GPS observations. Chin Astron Astrophys 28(3):331–337. doi:10.1016/j.chinastron.2004.07.008

    Article  Google Scholar 

  • Jin SG, Park J, Wang J, Choi B, Park P (2006) Electron density profiles derived from ground-based GPS observations. J Navig 59(3):395–401. doi:10.1017/S0373463306003821

    Google Scholar 

  • Jin SG, Cho J, Park J (2007) Ionospheric slab thickness and its seasonal variations observed by GPS. J Atmos Sol Terr Phys 69(15):1864–1870. doi:10.1016/j.jastp.2007.07.008

    Article  Google Scholar 

  • Jin SG, Luo OF, Park P (2008) GPS observations of the ionospheric F2-layer behavior during the 20th November 2003 geomagnetic storm over South Korea. J Geod 82(12):883–892. doi:10.1007/s00190-008-0217-x

    Article  Google Scholar 

  • Jin SG, Zhu WY, Afraimovich E (2010) Co-seismic ionospheric and deformation signals on the 2008 magnitude 8.0 Wenchuan Earthquake from GPS observations. Int J Remote Sens 31(13):3535–3543. doi:10.1080/01431161003727739

    Article  Google Scholar 

  • Kiryushkin V, Afraimovich E (2007) Determining the parameters of ionospheric perturbation caused by earthquakes with using the quasi-optimum algorithm of spatiotemporal processing of TEC measurements. Earth Planets Space 59:267–278

    Google Scholar 

  • Klobuchar JK (1991) Ionospheric effects on GPS. GPS World:48–51

    Google Scholar 

  • Liu J, Chen J, Zhang Y et al (1998) The theory and method of wide area differential GPS. Surveying and Mapping Press, Beijing

    Google Scholar 

  • Mannucci AJ, Wilson B, Yuan DN (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3):565–574

    Article  Google Scholar 

  • Mansilla G, Mosert M, Ezquer R (2005) Seasonal variation of the total electron content, maximum electron density and equivalent slab thickness at a South-American station. J Atmos Sol Terr Phys 67:1687–1690

    Article  Google Scholar 

  • Otsuka Y, Ogawa T, Saito A, Tsugawa T, Fukao S, Miyazak S (2002) A new technique for mapping of total electron content using GPS network in Japan. Earth Planets Space 54:63–70

    Google Scholar 

  • Pandey VK, Sethi NK, Mahajan KK (2001) Equivalent slab thickness and its variability: a study with incoherent scatter measurements. Adv Space Res 27:61–64

    Article  Google Scholar 

  • Raymund TD, Austen JR, Franke SJ (1990) Application of computerized tomography to the investigation of ionospheric structures. Radio Sci 25:771–789

    Article  Google Scholar 

  • Reinishch BW, Haines DM, Benson RF, Green JL, Sales GS, Taylor W (2001) Radio sounding in space: magnetosphere and topside ionosphere. J Atmos Sol Terr Phys 63:87–98

    Article  Google Scholar 

  • Rocken C (1997) Analysis and validation of GPS/MET data in the neutral atmosphere. J Geophys Res 102:29849–29866

    Article  Google Scholar 

  • Ruffini G, Flores A, Rius A (1998) GPS tomography of the ionospheric electron content with a correlation functional. IEEE Trans Geosci Remote Sens 36(1):143–153

    Article  Google Scholar 

  • Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the Global Positioning System. Ph.D. dissertation. Astronomical Institute, University of Berne, Switzerland

    Google Scholar 

  • Skone S (1998) Wide area ionosphere grid modeling in the Auroral Region. Ph.D. thesis, The University of Calgary, Calgary, Alberta, Canada

    Google Scholar 

  • Syndergaard S (2000) On the ionosphere calibration in GPS radio occultation measurements. Radio Sci 35(3):865–883

    Article  Google Scholar 

  • Tsai LC, Liu CH, Tsai WH, Liu CT (2002) Tomographic imaging of the ionosphere using the GPS/MET and NNSS data. J Atmos Sol Terr Phys 64:2003–2011

    Article  Google Scholar 

  • Tsunoda RT (1988) High-latitude F-region irregularities: a review and synthesis. Rev Geophys 26:719–760

    Article  Google Scholar 

  • Wall ME, Dyck PA, Brettin TS (2001) SVDMAN – singular value decomposition analysis of microarray data. Bioinformatics 17:566–568

    Article  Google Scholar 

  • Ware R (1992) GPS sounding of the earth atmosphere. GPS World 3:56–57

    Google Scholar 

  • Yin P, Mitchell CN, Spencer PS, Foster JC (2004) Ionospheric electron concentration imaging using GPS over the USA during the storm of July 2000. Geophys Res Lett 31:L12806. doi:10.1029/2004GL019899

    Article  Google Scholar 

  • Yuan Y, Ou J (2002) Differential Areas for Differential Stations (DADS): a new method of establishing grid ionospheric model. Chin Sci Bull 47(12):1033–1036

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jin, S., Cardellach, E., Xie, F. (2014). Ground GNSS Ionosphere Sounding. In: GNSS Remote Sensing. Remote Sensing and Digital Image Processing, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7482-7_4

Download citation

Publish with us

Policies and ethics