Skip to main content

Chemical Wave Structures

  • Chapter
The Chemistry of Matter Waves
  • 856 Accesses

Abstract

The wave structure of the electron lends itself to the formulation of chemical phenomena in terms of number theory. Without a particle concept the behaviour of elementary units of matter, in the form of solitons, is described directly in the wave formalism originally proposed by Schrödinger and Madelung in hydrodynamic analogy. The quantum condition appears naturally as a minimum action principle. All atoms are alike with nuclei bathed in a uniform electronic fluid, the spherical wave structure of which is revealed by optimization on a logarithmic spiral. The density distribution pattern has much in common with the Bohr–de Broglie model of atomic structure and predicts a number of important atomic properties, including atomic size, ionization radius, electronegativity and atomic polarizability. The intimate connection between atomic properties and space-time curvature is convincingly demonstrated by derivation of atomic radii as a periodic function optimized on Fibonacci spirals. Details of covalent interaction are elucidated by the manipulation of ionization radii and the golden ratio as parameters to predict interatomic distance, bond order, dissociation energy, stretching force constant and dipole moments. Extended to molecules the matter-wave approach demonstrates that the concepts of structure and shape of a free molecule are strictly four-dimensional. Molecular structure observed and modelled in three dimensions only applies to condensed phases. Molecules involved in chemical change are essentially in the free state and their mode of interaction is not always obvious as a function of assumed three-dimensional structure. Proposed mechanisms for synthetic processes serve to rationalize the apparent discrepancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As understood in three-dimensional Euclidean space.

References

  1. Sommerfeld, A.: Simplified deduction of the field and the forces of an electron moving in any given way. Proc. Kon. Acad. Wet. Amst. 8, 346–367 (1904)

    Google Scholar 

  2. Lorentz, H.A.: Electromagnetic phenomena in a system moving with any velocity smaller than that of light. Proc. Kon. Acad. Wet. Amst. 8, 809–831 (1904)

    Google Scholar 

  3. Madelung, E.: Quantentheorie in hydrodynamischer Form. Z. Phys. 40, 322–326 (1926)

    Google Scholar 

  4. Boeyens, J.C.A.: Chemistry from First Principles. www.springer.com (2008)

    Book  Google Scholar 

  5. Schutte, C.J.H.: Is the Rydberg-Ritz relationship valid? Struct. Bond. 148, 49–69 (2013)

    Article  CAS  Google Scholar 

  6. Boeyens, J.C.A.: Commensurability in the solar system. Phys. Essays 22, 493–499 (2009)

    Article  Google Scholar 

  7. Boeyens, J.C.A.: A molecular-structure hypothesis. Int. J. Mol. Sci. 11, 4267–4284 (2010)

    Article  CAS  Google Scholar 

  8. Boeyens, J.C.A.: Calculation of atomic structure. Struct. Bond. 148, 71–91 (2013)

    Article  CAS  Google Scholar 

  9. Stodolna, A.S., Rouzée, A., Lépine, F., Cohen, S., Ribocheaux, F., Gijsbertsen, A., Jungman, J.H., Bordas, C., Vrakking, M.J.J.: Hydrogen atoms under magnification: Direct observation of the nodal structure of Stark states. Phys. Rev. Lett. 110, 213001 (2013)

    Article  CAS  Google Scholar 

  10. Hashimoto, K., Champel, T., Florens, S., Sohrmann, C., Wiebe, J., Hirayama, Y., Römer, R.A., Wiesendanger, R., Morgenstern, M.: Robust nodal structure of Landau level wave functions revealed by Fourier transform scanning tunneling spectroscopy. Phys. Rev. Lett. 109, 116805 (2012)

    Article  CAS  Google Scholar 

  11. Bransden, B.H., Joachain, C.J.: Physics of Atoms and Molecules. Longman, London (1983)

    Google Scholar 

  12. Cotton, F.A., Wilkinson, G.: Advanced Inorganic Chemistry, 2nd edn. Interscience, New York (1966)

    Google Scholar 

  13. Nagaoka, H.: On a dynamical system illustrating the spectrum lines and the phenomena of radioactivity. Nature 69, 392–393 (1904)

    Article  CAS  Google Scholar 

  14. Boeyens, J.C.A.: Ionization radii of compressed atoms. J. Chem. Soc. Faraday Trans. 90, 3377–3381 (1994)

    Article  CAS  Google Scholar 

  15. Boeyens, J.C.A.: The periodic electronegativity table. Z. Naturforsch. 63b, 199–209 (2008)

    Google Scholar 

  16. Boeyens, J.C.A., Levendis, D.C.: All is number. Struct. Bond. 148, 161–179 (2013)

    Article  CAS  Google Scholar 

  17. Boeyens, J.C.A.: Covalent interaction. Struct. Bond. 148, 93–135 (2013)

    Article  CAS  Google Scholar 

  18. Lide, D.R. (ed.): Handbook of Chemistry and Physics, 86th edn. CRC Press, Boca Raton (2005–2006)

    Google Scholar 

  19. Miller, T.M., Bederson, B.: Atomic and molecular polarizabilities. Adv. At. Mol. Opt. Phys. 13, 1–55 (1977)

    CAS  Google Scholar 

  20. Kirkwood, J.G.: Polarisierbarkeiten, Suszeptibilitäten und van der Waalssche Kräfte der Atome mit mehreren Elektronen. Phys. Z. 33, 57–60 (1932)

    CAS  Google Scholar 

  21. Hirschfelder, J.O., Curtis, C.F., Bird, R.B.: Molecular Theory of Gases and Liquids. Wiley, New York (1954)

    Google Scholar 

  22. Sims, J.S., Rumble, J.R.: Upper and lower bounds to atomic and molecular properties. Phys. Rev. A 8, 2231–2235 (1973)

    Article  CAS  Google Scholar 

  23. Atoji, M.: Atomic polarizability. J. Chem. Phys. 25, 174 (1956)

    Article  CAS  Google Scholar 

  24. Heslop, R.B., Robinson, P.L.: Inorganic Chemistry. Elsevier, Amsterdam (1960)

    Google Scholar 

  25. Mann, J.B.: Atomic structure calculations II. Los Alamos Scientific Report, LA-3691 (1968)

    Google Scholar 

  26. Boeyens, J.C.A., Comba, P.: Chemistry by number theory. Struct. Bond. 148, 1–24 (2013)

    Article  CAS  Google Scholar 

  27. Stanbury, P.: The alleged ubiquity of π. Nature 304, 11 (1983)

    Google Scholar 

  28. Comba, P., Boeyens, J.C.A.: Molecular shape. Struct. Bond. 148, 137–159 (2013)

    Article  CAS  Google Scholar 

  29. Boeyens, J.C.A., Levendis, D.C.: The structure lacuna. Int. J. Mol. Sci. 13, 9081–9096 (2012)

    Article  CAS  Google Scholar 

  30. Rehder, D.: Chemistry in Space. Wiley-VCH, Weinheim (2010)

    Book  Google Scholar 

  31. Comba, P., Hambley, T.W., Martin, B.: Molecular Modeling of Inorganic Compounds, 3rd edn. Wiley-VCH, Weinheim (2009)

    Book  Google Scholar 

  32. Sykes, P.: A Guidebook to Mechanism in Organic Chemistry. Longman, London (1961)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boeyens, J.C.A. (2013). Chemical Wave Structures. In: The Chemistry of Matter Waves. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7578-7_9

Download citation

Publish with us

Policies and ethics