Skip to main content

High Wind Speed Regime

  • Chapter
  • First Online:
The Near-Surface Layer of the Ocean

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 48))

Abstract

Under high wind speed conditions breaking waves disrupt the air-sea interface producing a two-phase zoneā€”air bubbles in water and sea spray in air. This mixed-phase environment changes the regime of air-sea interaction. In this chapter, after reviewing dynamics of air-bubbles and sea spray droplets in detail, the reader is exposed to the idea that under strong winds Kelvin-Helmholtz instability is the likely mechanism for the intense production of spume and formation of a two-phase transition layer. The resulting two-phase environment eliminates short wind-waves, including some responsible for a substantial part of the surface wind stress. Amazingly, this concept provides an explanation for the rapid intensification of some storms to major tropical cyclones and observed bi-modal distribution of tropical cyclone maximum intensity. A long overdue implementation of sea surface micro-physics into operational models is expected to improve predictions of tropical cyclone intensity and the associated wave field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreas EL (1992) Sea spray and the turbulent air-sea heat fluxes. J Geophys Res 97:11429ā€“11441

    ArticleĀ  Google ScholarĀ 

  • Andreas EL (1998) A new sea spray generation function for wind speeds up to 32 m sā€“1. J Phys Oceanogr 28:2175ā€“2184

    ArticleĀ  Google ScholarĀ 

  • Andreas EL (2002) A review of sea spray generation function for the open ocean. In: Perrie W (ed) Atmosphere-Ocean interaction, VolĀ 1. WIT Press, Southampton, pp.Ā 1ā€“46

    Google ScholarĀ 

  • Andreas EL (2004) Spray stress revisited. J Phys Oceanogr 34:1429ā€“1440

    ArticleĀ  Google ScholarĀ 

  • Andreas EL, Emanuel KA (2001) Effects of sea spray on tropical cyclone activity. J Geophys Res 58:3741ā€“3751

    Google ScholarĀ 

  • Andreas EL, Jones KF, Fairall CW (2010) Production velocity of sea spray droplets. J Geophys Res 115:C12065

    ArticleĀ  Google ScholarĀ 

  • Anguelova MD, Webster F (2006) Whitecap coverage from satellite measurements: a first step toward modeling the variability of oceanic whitecaps. J Geophys Res 111:C03017

    Google ScholarĀ 

  • Apel JR (1994) An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. J Geophys Res 99(C8):16269ā€“16291

    ArticleĀ  Google ScholarĀ 

  • Banner ML, Phillips OM (1974) On the incipient breaking of small scale waves. J Fluid Mech 65:647ā€“656

    ArticleĀ  Google ScholarĀ 

  • Banner ML, Mellville WK (1976) Separation of air-flow over water waves. J Fluid Mech 77:825ā€“842

    ArticleĀ  Google ScholarĀ 

  • Bao J-W, Fairall CW, Michelson SA, Bianco L (2011) Parameterizations of seaā€“spray impact on the airā€“sea momentum and heat fluxes. J Phys Oceanogr 139:3781ā€“3797

    Google ScholarĀ 

  • Barenblatt GI, Golitsyn GS (1974) Local structure of mature dust storms. J Atmos Sci 31:1917ā€“1933

    ArticleĀ  Google ScholarĀ 

  • Bell MM, Montgomery MT, Emanuel KA (2012) Airā€“sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J Atmos Sci 69:3197ā€“3222

    ArticleĀ  Google ScholarĀ 

  • Bjerkaas AW, Reidel FW (1979) Proposed model for the elevation spectrum of a wind-roughened sea surface. Report APL-TG-1328ā€“1ā€“31, ppĀ 31. Appl Phys Lab, Johns Hopkins University, Laurel, MD

    Google ScholarĀ 

  • Black PG, Dā€™Asaro EA, Drennan WM, French JR, Niiler PP, Sanford TB, Terrill EJ, Walsh EJ, Zhang JA (2007) Air-Sea exchange in hurricanes: synthesis of observations from the coupled boundary layer air-sea transfer experiment. Bull Amer Meteor Soc 88(3):357ā€“374

    ArticleĀ  Google ScholarĀ 

  • Bortkovskii RS (1983) Heat and moisture exchange between atmosphere and ocean under storm conditions. Hydrometeorological Publishing House, Leningrad, ppĀ 160

    Google ScholarĀ 

  • Bowyer PA (2001) Video measurements of near-surface bubble spectra. J Geophys Res 106:14179ā€“14190

    ArticleĀ  Google ScholarĀ 

  • Brooks IM, Yelland MJ, Upstill-Goddard et al (2009) Physical exchanges at the air-sea interface: field measurements from UK-SOLAS. Bull Amer Meteor Soc 90:629ā€“644

    Google ScholarĀ 

  • Callaghan A, DeLeeuw G, Cohen L, Oā€™Dowd CD (2008a) Relationship of oceanic whitecap coverage to wind speed and wind history. Geophys Res Lett 35:L23609. doi:10.1029/2008GL036165

    ArticleĀ  Google ScholarĀ 

  • Chamides WL, Stelson AW (1992) Aqueous-phase chemical processes in deliquescent sea-salt aerosols: a mechanism that couples the atmospheric cycles of S and sea salt. J Geophys Res 97:(20)565ā€“20, 580

    Google ScholarĀ 

  • Charnock H (1955) Wind stress on a water surface. Q J Roy Meteor Soc 81:639ā€“640

    ArticleĀ  Google ScholarĀ 

  • Clarke AD, Owens SR, Zhou J (2006) An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere. J Geophys Res 111:D06202. doi:10.1029/2005JD006565

    Google ScholarĀ 

  • Clift R, Grace JR, Weber ME (1978) Bubbles drops and particles. Academic Press, New York, ppĀ 380

    Google ScholarĀ 

  • Csanady GT (1990) The role of breaking wavelets in air-sea gas transfer. J Geophys Res 95:749ā€“759

    ArticleĀ  Google ScholarĀ 

  • Deane GB (2012) Acoustic screening of the ocean surface by bubbles. Proceddings of underwater communications conference, 12ā€“14 September 2012, Sestri Levante, Italy, pĀ 7 (http://www.ucomms.net/proceedings.php)

  • Deane GB, Stokes MD (2002) Scale dependence of bubble creation mechanisms in breaking waves. Nature 418:839ā€“844

    ArticleĀ  Google ScholarĀ 

  • de Leeuw G, Neele FP, Hill M, Smith MH, Vignati E (2000) Production of sea spray aerosol in the surf zone. J Geophys Res 105:(D24)29397ā€“29409

    Google ScholarĀ 

  • de Leeuw G, Moerman M, Cohen L, Brooks B, Smith M, Vignati E (2003) Aerosols, bubbles and sea spray production studies during the RED experiments, Proceedings AMS conference, Long Beach, CA, 9ā€“13 February, 2003

    Google ScholarĀ 

  • de Leeuw G, Andreas EL, Anguelova MD, Fairall CW, Lewis ER, Oā€™Dowd C, Schulz M, Schwartz SE (2011) Production flux of sea spray aerosol. Rev Geophys 49:RG2001. doi:10.1029/2010RG000349

    Google ScholarĀ 

  • Deane GB, Stokes MD (1999) Air entrainment processes and bubble size distributions in the surf zone. J Phys Oceanogr 29:1393ā€“1403

    ArticleĀ  Google ScholarĀ 

  • Dhanak MR, Si C (1999) On reduction of turbulent wall friction through spanwise wall oscillations. J Fluid Mech 383:175ā€“195

    Google ScholarĀ 

  • Donelan MA, Pierson WJ (1987) Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J Geophys Res 92:4971ā€“5029

    ArticleĀ  Google ScholarĀ 

  • Donelan MA, Haus BK, Reul N, Plant W, Stiassnie M, Graber H, Brown O, Saltzman E (2004) On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys Res Lett 31:L18306

    ArticleĀ  Google ScholarĀ 

  • Duennebier FK, Lukas R, Nosal E-M, Aucan J, Weller RA (2012) Wind, waves, and acoustic background levels at station aloha. J Geophys Res 117:C03017

    Google ScholarĀ 

  • Elfouhaily T, Chapron B, Katsuros K, Vandemark D (1997) A unified directional spectrum for long and short wind-driven waves. J Geophys Res 102:15781ā€“15796

    ArticleĀ  Google ScholarĀ 

  • Emanuel K (1995) Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J Atmos Sci 52:3969ā€“3976

    ArticleĀ  Google ScholarĀ 

  • Emanuel K (2000) A statistical analysis of tropical cyclone intensity. Mon Weather Rev 128:1139ā€“1152

    ArticleĀ  Google ScholarĀ 

  • Emanuel K (2003) Q similarity hypothesis for air-sea exchange at extreme wind speeds. J Atmos Sci 60:1420ā€“1428

    ArticleĀ  Google ScholarĀ 

  • Fairall CW, Kepert JD, Holland GJ (1994) The effect of sea spray on the surface wind profile during conditions of strong wind. Bound -Lay Meteorol 55:305ā€“308

    Google ScholarĀ 

  • Fan Y, Ginis I, Hara T (2009) The effect of wind-wave-current inter-action on air-sea momentum fluxes and ocean response in tropical cyclones. J Phys Oceanogr 39:1019ā€“1034

    ArticleĀ  Google ScholarĀ 

  • Farmer DM, Li M (1995) Patterns of bubble clouds organized by Langmuir circulation. J Phys Oceanogr 25:1426ā€“1440

    ArticleĀ  Google ScholarĀ 

  • Farmer DM, Vagle S, Booth AD (1998) A free-flooding acoustical resonator for measurement of bubble size distributions. J Atmos Ocean Tech 15(5):1132ā€“1146

    ArticleĀ  Google ScholarĀ 

  • Farrell BF, Ioannou PJ (2008) The stochastic parametric mechanism for growth of wind-driven surface water waves. J Phys Oceanogr 38:862ā€“879

    ArticleĀ  Google ScholarĀ 

  • Farrell WE, Munk W (2008) What do deep sea pressure fluctuations tell about short surface waves? Geophys Res Letters 35: L19605, doi:10.1029/2008GL035008

    Google ScholarĀ 

  • Garrett C, Li M, Farmer D (2000) The connection between bubble size spectra and kinetic energy dissipation rates in the upper ocean. J Phys Oceanogr 30:2163ā€“2171

    ArticleĀ  Google ScholarĀ 

  • Garrettson GA (1973) Bubble transport theory with application to the upper ocean. J Fluid Mech 59:187ā€“206

    ArticleĀ  Google ScholarĀ 

  • Gong SL, Barrie LA, Blanchet J-P (1997) Modeling sea-salt aerosols in the atmosphere: 1, Model development. J Geophys Res 102:3805ā€“3818

    ArticleĀ  Google ScholarĀ 

  • Gƶz MF, Bunner B, Sommerfeld M, Tryggvason G (2001) Direct numerical simulation of bidisperse bubble swarms. Contribution to the international conference on multiphase flow, New Orleans, May 2001

    Google ScholarĀ 

  • Hara T, Bock EJ, Lyzenga D (1994) In situ measurements of capillary-gravity wave spectra using a scanning laser slope gauge and microwave radars. J Geophys Res 99(C6):12593ā€“12602

    ArticleĀ  Google ScholarĀ 

  • Hinze JO (1955) Fundamentals of the hydrodynamic mechanism of splitting in dispersion process. AICHE J 1:289ā€“295

    ArticleĀ  Google ScholarĀ 

  • Hoepffner J, Blumenthal R, Zaleski S (2011) Self-similar wave produced by local perturbation of the Kelvin-Helmholtz shear-layer instability. Phys Rev Lett 106(10):104502

    ArticleĀ  Google ScholarĀ 

  • Holthuijsen LH, Powell MD, Pietrzak JD (2012) Wind and waves in extreme hurricanes. J Geophys Res 117:C09003. doi:10.1029/2012JC007983

    Google ScholarĀ 

  • Hsiao SV, Shemdin OH (1983) Measurements of wind velocity and pressure with a wave follower during MARSEN. J Geophys Res 88:9841ā€“9849

    ArticleĀ  Google ScholarĀ 

  • Hwang PA, Shemdin OH (1998) The dependence of sea surface slope on atmospheric stability and swell conditions. J Geophys Res 93:13903ā€“13912

    ArticleĀ  Google ScholarĀ 

  • Hwang PA, Burrage DM, Wang DW, Wesson JC (2013) Ocean surface roughness spectrum in high wind condition for microwave backscatter and emission computations. J Atmos Oceanic Technol, in press

    Google ScholarĀ 

  • Iida N, Toba Y, Chaen M (1992) A new expression for the production rate of seawater droplets on the sea surface. J Oceanogr 48:439ā€“460

    ArticleĀ  Google ScholarĀ 

  • Ingel LKh (2011) The effect of sea spray on the dynamics of marine atmospheric surface layer in strong winds. Izv Atmos Ocean Phys 47(1):119ā€“127

    ArticleĀ  Google ScholarĀ 

  • Intergovernmental Panel on Climate Change (IPCC), Climate Change (2001) The scientific basis, contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google ScholarĀ 

  • JƤhne B, Riemer KS (1990) Two-dimensional wave number spectra of small-scale water surface waves. J Geophys Res 95(C7):11531ā€“11546

    ArticleĀ  Google ScholarĀ 

  • Jeong D, Haus BK, Donelan MA (2012) Enthalpy transfer across the airā€“water interface in high winds including spray. J Atmos Sci 69:2773ā€“2748

    Google ScholarĀ 

  • Johnson B, Cooke R (1979) Bubble populations and spectra in coastal waters: a photographic approach. J Geophys Res 84:3761ā€“3766

    ArticleĀ  Google ScholarĀ 

  • Katsaros KB, de Leeuw G (1994) Comment on ā€œSea spray and turbulent air-sea heat fluxesā€ by Edgar L. Andreas. J Geophys Res 99:14339ā€“14343

    ArticleĀ  Google ScholarĀ 

  • Keeling RF (1993) On the role of large bubbles in air-sea gas exchange and supersaturation in the ocean. J Mar Res 51:237ā€“271

    ArticleĀ  Google ScholarĀ 

  • Kelly RE (1965) The stability of an unsteady Kelvin-Helmholtz flow. J Fluid Mech 22(3):547ā€“560

    ArticleĀ  Google ScholarĀ 

  • Koga M (1981) Direct production of droplets from breaking wind-waves-Its observation by a multi-colored overlapping exposure technique. Tellus 33:552ā€“563

    ArticleĀ  Google ScholarĀ 

  • Koga M, Toba Y (1981) Droplet distribution and dispersion process on breaking wind waves. Sci Rep Tohoku University, Sr. 5. Tohoku Geophys J 28:1ā€“25

    Google ScholarĀ 

  • Kolmogorov AN (1949) O droblenii kapel v turbulentnom potoke. Dokl Akad Nauk USSR 66(15):825ā€“828 (in Russian)

    Google ScholarĀ 

  • Kossin JP, Olander TL, Knapp KR (2013) Trend Analysis with a New Global Record of Tropical Cyclone Intensity. Journal of Climate, accepted

    Google ScholarĀ 

  • Kudryavtsev VN (2006) On the effect of sea drops on the atmospheric boundary layer. J Geophys Res 111:C07020

    Google ScholarĀ 

  • Kudryavtsev VN, Makin VK (2011) Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Bound -Lay Meteor 140:383ā€“310

    ArticleĀ  Google ScholarĀ 

  • Large WG, Pond S (1981) Open ocean momentum flux measurements in moderate to strong winds. J Phys Oceanogr 11:324ā€“336

    ArticleĀ  Google ScholarĀ 

  • Leifer I, de Leeuw G (2001) Bubble measurements in breaking-wave generated bubble plumes during the LUMINY wind-wave experiment. In: Saltzman ES, Donealn M, Drennan W, Wanninkhof R (eds) AGU monograph gas transfer at water surfaces, ppĀ 303ā€“309

    Google ScholarĀ 

  • Leifer I, de Leeuw G (2006) Bubbles generated from wind-steepened breaking waves: 1. Bubble plume bubbles. J Geophys Res 111:C06020. doi:10.1029/2004JC002673

    Google ScholarĀ 

  • Leifer I, de Leeuw G, Cohen LH (2000) Secondary bubble production from breaking waves: the bubble burst mechanism. Geophys Res Lett 27:4077ā€“4080

    ArticleĀ  Google ScholarĀ 

  • LeMaire D, Sobieski P, Guissard A (1999) Full-range sea surface spectrum in nonfully developed state for scattering calculations. IEEE Trans Geosci, Remote Sensing 37:1038ā€“1051

    ArticleĀ  Google ScholarĀ 

  • Leifer I, de Leeuw G, Cohen LH (2003) Optical measurement of bubbles: system design and application. J Atmos Oceanic Technol 20:1317ā€“1332

    ArticleĀ  Google ScholarĀ 

  • Lesieur M (2008) Turbulence in fluids, fourth revised and enlarged edition. Springer. p 148.

    Google ScholarĀ 

  • Lewis DA, Davidson JF (1982) Bubble splitting in shear flow. Trans IChemE 60:283ā€“291

    Google ScholarĀ 

  • Lewis ER, Schwartz SE (2004) Sea salt aerosol production: mechanisms, methods, measurements and models. Geophys Monogr Ser.152, ppĀ 413, AGU, Washington, D.C

    Google ScholarĀ 

  • Liang J-H, McWilliams JC, Sullivan PP, Baschek B (2011) Modeling bubbles and dissolved gases in the ocean. J Geophys Res 116: C03015, doi:10.1029/2010JC006579

    Google ScholarĀ 

  • Liang J-H, McWilliams JC, Sullivan PP, Baschek B (2012) Large eddy simulation of the bubbly ocean: new insights on subsurface bubble distribution and bubble-mediated gas transfer. J Geophys Res 117:C04002

    Google ScholarĀ 

  • Lima-Ochoterena R, Zenit R (2003) Visualization of the flow around a bubble moving in a low viscosity liquid. Rev Mex Fis 49:348ā€“352

    Google ScholarĀ 

  • Lohmann U, Feichter J, Penner J, Leaitch R (2000) Indirect effect of sulfate and carbonaceous aerosols: a mechanistic treatment. J Geophys Res 105:12193ā€“12206

    ArticleĀ  Google ScholarĀ 

  • Marmorino GO, Trump CL (1996) High resolution measurements made across a tidal intrusion front. J Geophys Res 101(C11):25661ā€“25674

    ArticleĀ  Google ScholarĀ 

  • Martinez-Bazan C, Montanes JL, Lasheras JC (1999) On the breakup of an air bubble injected into fully turbulent flow, part 2, size PDF of the resulting daughter bubbles. J Fluid Mech 401:183ā€“207

    ArticleĀ  Google ScholarĀ 

  • MĆ„rtensson EM, Nilsson ED, G de Leeuw, Cohen LH, Hansson H-C (2003) Laboratory simulations and parameterization of the primary marine aerosol production. J Geophys Res 108(D9):4297

    Google ScholarĀ 

  • McNaughton KG, Brunet Y (2002) Townsendā€™s hypothesis, coherent structures and Monin-Obukhov similarity. Bound -Lay Meteor 102:161ā€“175

    ArticleĀ  Google ScholarĀ 

  • Miles JW (1959) On the generation of surface waves by shear flows, part 3, Kelvin-Helmholtz instability. J Fluid Mech 6:583ā€“598

    ArticleĀ  Google ScholarĀ 

  • Monahan EC, Oā€™Muircheartaigh I (1980) Optimal power-law description of oceanic whitecap coverage dependence on wind speed. J Phys Oceanogr 10:2094ā€“2099

    ArticleĀ  Google ScholarĀ 

  • Monahan EC, Fairall CW, Davidson KL, Boyle PJ (1983) Observed inter-relations between 10 m winds, ocean whitecaps and marine aerosols. Q J Roy Meteor Soc 109:379ā€“392

    ArticleĀ  Google ScholarĀ 

  • Monahan EC, Spiel DE, Davidson KL (1986) A model of marine aerosol generation via whitecaps and wave disruption. In: Monahan EC, MacNiocaill G, (eds) Oceanic whitecaps and their role in air-sea exchange. D. Reidel, Dordrecht, ppĀ 167ā€“174

    Google ScholarĀ 

  • Monin AS, Krasitskii VP (1985) Phenomena on the ocean surface. Hydrometeoizdat, Leningrad, ppĀ 376. (in Russian)

    Google ScholarĀ 

  • Norris SJ, Brooks IM, BI. Moat BL, Yelland MJ, de Leeuw G, Pascal RW, and Brooks B (2013) Near-surface measurements of sea spray aerosol production over whitecaps in the open ocean. Ocean Sci. 9, 133ā€“145

    Google ScholarĀ 

  • Ocampo-Torres FJ, Donelan MA, Merzi N, Jia F (1994) Laboratory measurements of mass transfer of carbon dioxide and water vapour for smooth and rough flow conditions. Tellus B 46: 16ā€“32

    Google ScholarĀ 

  • Oā€™Dowd CD, Smith MH (1993) Physiochemical properties of aerosols over the northeast Atlantic: evidence for wind-related submicron sea-salt aerosol production. J Geophys Res 98:1137ā€“1149

    ArticleĀ  Google ScholarĀ 

  • Oā€™Dowd CD, G de Leeuw (2007) Marine aerosol production: a review of the current knowledge. Phil Trans R Soc A 365:1753ā€“1774. doi:10.1098/rsta.2007.2043

    ArticleĀ  Google ScholarĀ 

  • Oā€™Dowd CD, Lowe JA, Smith MH (1999) Coupling sea-salt and sulphate interactions and its impact on cloud droplet concentration predictions. Geophys Res Lett 26:1311ā€“1314

    ArticleĀ  Google ScholarĀ 

  • Pascal RW et al (2011) A spar buoy for high-frequency wave measurements and detection of wave breaking in the open ocean. J Atmos Oceanic Technol 28:590ā€“605

    ArticleĀ  Google ScholarĀ 

  • Pattison MJ, Belcher SE (1999) Production rates of sea-spray droplets. J Geophys Res 104:18397ā€“18407

    ArticleĀ  Google ScholarĀ 

  • Patro R, Leifer I, Bower P (2001) Better bubble process modeling: Improved bubble hydrodynamics parameterization. In: Saltzman ES, Donealn M, Drennan W, Wanninkhof R (eds) AGU monograph gas transfer at water surfaces ppĀ 315ā€“320

    Google ScholarĀ 

  • Phelps AD, Ramble DG, Leighton TG (1997) The use of a combination frequency technique to measure the surf zone bubble population. J Acoust Soc Am 101: 1981ā€“1989

    Google ScholarĀ 

  • Phelps AD, Leighton TG (1998) Oceanic bubble population measurements using a buoy-deployed combination frequency technique. IEEE J Oceanic Eng 23:400ā€“410

    ArticleĀ  Google ScholarĀ 

  • Phillips OM (1957) On the generation of waves by turbulent wind. J Fluid Mech 2:417ā€“445

    ArticleĀ  Google ScholarĀ 

  • Powell MD, Vickery PJ, Reinhold TA (2003) Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422:279ā€“283

    ArticleĀ  Google ScholarĀ 

  • Prandtl L (1949) FĆ¼hrer Durch die Strƶmngslehre, 3rd edn. F. Vieweg, Brawnschweig

    Google ScholarĀ 

  • Pruppacher HR, Klett JD (1978) Microphysics of clouds and precipitation. D. Reidel Publishing Company, Dordrecht, ppĀ 714

    Google ScholarĀ 

  • Resch FR, Afeti G (1992) Sub-micron film drop production by bubbles in seawater. J Geophys Res 97:3679ā€“3683

    ArticleĀ  Google ScholarĀ 

  • Sampson CR, Kaplan J, Knaff JA, DeMaria M, Sisko CA (2011) A deterministic rapid intensification aid. Wea Forecasting 26:579ā€“585

    ArticleĀ  Google ScholarĀ 

  • Smith MH, Park PM, Consterdine IE (1993) Marine aerosol concentrations and estimated fluxes over the sea. Q J R Meteorol Soc 119:809ā€“824

    ArticleĀ  Google ScholarĀ 

  • Soloviev A, Lukas R (2006) The Near-Surface Layer of the Ocean: Structure, Dynamics and Applications. Springer, Dordrecht, The Netherlands, 574 pp

    Google ScholarĀ 

  • Soloviev A, Lukas R (2010) Effects of bubbles and spray on air-sea exchange in hurricane conditions. Bound -Lay Meteorol 136:365ā€“376

    ArticleĀ  Google ScholarĀ 

  • Soloviev A, Fujimura A, Matt S (2012) Air-sea interface in hurricane conditions. J Geophys Res 117:C00J34. doi:10.1029/2011JC007760

    Google ScholarĀ 

  • Soloviev A, Lukas R, Donelan M, Haus B, Ginis I (2013) The air-sea interface and surface stress under tropical cyclones. Nature Geoscience (manuscript for submission)

    Google ScholarĀ 

  • Spiel DE (1997) More on the births of jet drops from bubbles bursting on seawater surfaces. J Geophys Res 102:5815ā€“5821

    ArticleĀ  Google ScholarĀ 

  • Spiel DE (1998) On the birth of film drops from bubbles bursting on seawater surfaces. J Geophys Res 103:24907ā€“24918

    ArticleĀ  Google ScholarĀ 

  • Thomson W (Lord Kelvin) (1871) Hydrokinetic solutions and observations. Philosophical Magazine. Ser 4 42:ppĀ 362ā€“377

    Google ScholarĀ 

  • Thorpe SA (1986) Bubble clouds: a review of their detection by sonar, of realistic models, and of how may be determined. In: Monahan EC, MacNiocaill G (eds) Whitecaps and their role in air-sea exchange processes. D. Reidel, Norwell, ppĀ 57ā€“68

    Google ScholarĀ 

  • Thorpe SA (1982) On the clouds of bubbles formed by breaking wind-waves in deep water, and their role in airā€“sea gas transfer. P Trans Roy Soc Lon Ser A 304:155ā€“210

    ArticleĀ  Google ScholarĀ 

  • Troitskaya YI, Sergeev DA, Kandaurov AA, Baidakov GA, Vdovin MA, and Kazakov VI (2012) Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions. J Geophys Res. 117: C00J21, doi:10.1029/2011JC007778

    Google ScholarĀ 

  • Tsai W (2001) On the formation of streaks on wind-driven water surfaces. Geophys Res Lett 28(20): 3959ā€“3962. doi:10.1029/2001GL013190.

    Google ScholarĀ 

  • Turner JS (1973) Buoyancy effects in fluids. Cambridge University Press, New York

    BookĀ  Google ScholarĀ 

  • Veron F, Hopkins C, Harrison EL, Mueller JA (2012) Sea spray spume droplet production in high wind speeds. Geophys Res Lett 39:L16602

    Google ScholarĀ 

  • Woolf DK (1993) Bubbles and the air-sea transfer velocity of gases. Atmos -Ocean 31:517ā€“540

    ArticleĀ  Google ScholarĀ 

  • Woolf DK (1997) Bubbles and their role in air-sea gas exchange. In: Liss PS, Duce RA (eds) The sea surface and global change. Cambridge University Press, UK, ppĀ 173ā€“205

    ChapterĀ  Google ScholarĀ 

  • Woolf DK, Thorpe SA (1991) Bubbles and the air-sea exchange of gases in near-saturation conditions. J Mar Res 49:435ā€“466

    ArticleĀ  Google ScholarĀ 

  • Black PG, D'Asaro EA, Drennan WM, French JR, Niiler PP, Sanford TB, Terrill EJ, Walsh EJ, Zhang JA (2007) Air-Sea Exchange in Hurricanes: Synthesis of Observations from the Coupled Boundary Layer Air-Sea Transfer Experiment. Bull Amer Meteor Soc 88(3): 357ā€“374

    Google ScholarĀ 

  • Yecko P, Zaleski S, Fullana J-M (2002) Viscous modes in two-phase mixing layers. Phys Fluids 14:4115ā€“4122

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Soloviev .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Soloviev, A., Lukas, R. (2014). High Wind Speed Regime. In: The Near-Surface Layer of the Ocean. Atmospheric and Oceanographic Sciences Library, vol 48. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7621-0_6

Download citation

Publish with us

Policies and ethics