Skip to main content

Application of Microorganisms in Bioremediation of Environment from Heavy Metals

  • Chapter
  • First Online:
Environmental Deterioration and Human Health

Abstract

Heavy metals are important environmental pollutants which belong to the group of non-biodegradable and persistent compounds deposited in plant tissue (e.g. vegetables) which are then consumed by animals and humans. Increased pollution of natural environment with heavy metals, particularly in areas with anthropogenic pressure, also contributes to disorders in the natural balance of microbial populations. Molecular analysis carried out during the past decades revealed that density and diversity of microorganisms significantly correlated with increased contamination of the environment with heavy metals. As a result, a selective promotion of metal-tolerant genera of microorganisms was observed. In general, microorganisms are organisms with relatively high tolerance of unfavourable conditions, and these properties evolved over millions of years. In this chapter, a variety of mechanisms responsible for adaptation of microorganisms to high heavy metal concentrations, e.g. metal sorption, uptake and accumulation, extracellular precipitation and enzymatic oxidation or reduction, will be reported. Moreover, molecular mechanisms responsible for their metal tolerance will be described. The efficiency of accumulation of heavy metals in the microbial cells will be discussed and presented in photos from a reflection electron microscope (REM). The capacities of microorganisms for metal accumulation can be exploited to remove, concentrate and recover metals from polluted sites. This provides the basis for biotechnological solutions for the remediation of contaminated environments. Bioremediation has been regarded as an environment-friendly, inexpensive and efficient means of environmental restoration. Since microorganisms constitute a key factor of this technology, knowledge of the nature and molecular mechanisms of their tolerance of increased heavy metal concentrations is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Powell JR, Singh HB, Singh BK (2012) Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends in Biotechnol 30(8):416–420

    Article  CAS  Google Scholar 

  • Adarsh VK, Mishra M, Chowdhury S, Sudarshan M, Thakur AR, Ray Chaudhuri S (2007) Studies on metal microbe interaction of three bacterial isolates from east Calcutta wetland. Online J Biol Sci (7):80–88

    Google Scholar 

  • Aikpokpodion PE, Lajide L, Aiyescanmi AF (2010) Heavy metals contamination in fungicide treated cocoa plantations in cross river state, Nigeria. American–Eurasian J Agric & Environ Sci 8(3):268–274

    CAS  Google Scholar 

  • Bai HJ, Zhang ZM, Yang GE, Li BZ (2008) Bioremediation of cadmium by growing Rhodobacter sphaeroides: kinetic characteristic and mechanism studies. Bioresour Technol 99:7716–7722

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interations with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Google Scholar 

  • Bittsánszky A, Kömives T, Gullner G, Gyulai G, Kiss J, Heszky L, Radimszky L, Rennenberg H (2005) Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress. Environ Int 31:251–254

    Article  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  CAS  Google Scholar 

  • Carlin A, Shi W, Dey S, Rosen BP (1995) The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol 177:981–986

    CAS  Google Scholar 

  • Das P, Mukherjee S, Sen R (2009) Biosurfactant of marine origin exhibiting heavy metal remediation properties. Bioresour Technol 100:488–490

    Article  Google Scholar 

  • Del Val C, Barea JM, Azco’n-Aruilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65(2):718–723

    CAS  Google Scholar 

  • Elsharkawy MM, Shimizu M, Takahashi H, Hyakumachi M (2012) The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae induce systemic resistance against Cucumber mosaic virus in cucumber plants. Plant Soil 361:397–409

    Article  CAS  Google Scholar 

  • Fein JB, Martin AM, Wightman PG (2001) Metal adsorption onto bacterial surfaces: development of a predictive approach. Geochim Cosmochim Acta 65:4267–4273

    Article  CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  Google Scholar 

  • Hrynkiewicz K, Baum C (2013) Selection of ectomycorrhizal willow genotype on phytoextraction of heavy metals. Environ Technol 34(2):225–230

    Article  CAS  Google Scholar 

  • Hrynkiewicz K, Haug I, Baum C (2008) Ectomycorrhizal community structure under willows at former ore mining sites. Eur J Soil Biol 44:37–44

    Article  Google Scholar 

  • Hrynkiewicz K, Baum C, NiedojadÅ‚oJ, Dahm H (2009) Promotion of mycorrhiza formation and growth of willows by the bacterial strain Sphingomonas sp. 23 L on fly ash. Biol Fertil Soil 45:385–394

    Article  Google Scholar 

  • Hrynkiewicz K, Dabrowska G, Baum C, Niedojadlo K, Leinweber P (2012) Interactive and single effects of ectomycorrhiza formation and Bacillus cereus on metallothionein MT1 expression and phytoextraction of Cd and Zn by willows. Water Air Soil Poll 223(3):957–968

    Article  CAS  Google Scholar 

  • Hussein KA, Joo JH (2013) Heavy metal resistance of bacteria and its impact on the production of antioxidant enzymes. Afr J Microbiol Res 7(20):2288–2296.

    Google Scholar 

  • Ivask A, Virt M, Kahru A (2002) Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil. Soil Biol Biochem 34:1439–1447

    Article  CAS  Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Brit Med Bull 68:167–182

    Article  Google Scholar 

  • Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68(10):1996–2002

    Article  CAS  Google Scholar 

  • Karelova E, Harichova J, Stojnev T, Pangallo D, Ferianc P (2011) The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metal contaminated site. Biologia 66:18–26

    Article  CAS  Google Scholar 

  • Kumar M, Upretil RK (2000) Impact of lead stress and adaptation in Escherichia coli. Environ Res B 47:246–252

    CAS  Google Scholar 

  • Lazzaro A, Widmer F, Sperisen C, Beat Frey B (2008) Identification of dominant bacterial phylotypes in a cadmium-treated forest soil. FEMS Microbiol Ecol 63(2008):143–155.

    Article  CAS  Google Scholar 

  • Li HY, Li DW, He CM, Zhou ZP, Mei T, Xu HM (2012) Diversity and heavy metal tolerance of endophytic fungi from six dominant plant species in a Pb–Zn mine wasteland in China. Fungal Ecology 5(3):309–315

    Article  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  Google Scholar 

  • Malekzadeh F, Farazmand A, Ghafourian H, Shahamat M, Levin M, Colwell RR (2002) Uranium accumulation by a bacterium isolated from electroplating effluent. World J Microbiol Biotechnol 18:295–302

    Article  CAS  Google Scholar 

  • Nezhad Kermani A, Ghasemi M, Khosravan A, Farahmand A, Shakibaie M (2010) Cadmium bioremediation by metal-resistant mutated bacteria isolated from active sludge of industrial effluent. Iran J Environ Health Sci Eng 7(4):279–286

    Google Scholar 

  • Nies DH (1999) Microbial heavy metal resistance. Appl Environ Microbiol 51:730–750

    CAS  Google Scholar 

  • Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14:10197–10228

    Article  CAS  Google Scholar 

  • Olayinka KO, Oyeyiola AO, Odujebe FO (2011) Uptake of potentially toxic metals by vegetable plants grown on contaminated soil and their potential bioavailability using sequential extraction. J Soil Sci Environ Manage 2(8):220–227

    CAS  Google Scholar 

  • Peng J-F, Song YH, Yuan P, Cui X-Y, Qui G-I (2009) The remediation of heavy metals contaminated sediment. J Hazard Mat 161:633–640

    Article  CAS  Google Scholar 

  • Pillay VK, Nowak J (1997) Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L) seedlings inoculated with a pseudomonad bacterium. Can J Microbiol 43:354–361

    Article  CAS  Google Scholar 

  • Rajendran P, Muthukrishnan J, Gunasekaran P. (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41(9):935–944

    CAS  Google Scholar 

  • Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Schulz BJE, Boyle CIC, Sieber TN (eds) Microbial Root Endophytes. Springer:Berlin, pp. 1–13

    Chapter  Google Scholar 

  • Shrivastava R, Upreti RK, Chaturvedi UC (2003) Various cells of the immune system and intestine differ in their capacity to reduce hexavalent chromium. FEMS Immunol. Med Microbiol 38:65–70

    CAS  Google Scholar 

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190

    Article  Google Scholar 

  • Tsekova K, Todorova D, Ganeva S (2010) Removal of heavy metals from industrial wastewater by free and immobilized cells of Aspergillus niger. Int Biodeterior Biodegradation 64:44–51

    Google Scholar 

  • Turnau K, OrÅ‚owska E, Ryszka P, Zubek S, Anielska T, GawroÅ„ski S, Jurkiewicz A (2006) Role of mycorrhizal fungi in phytoremediation and toxicity monitoring of heavy metal rich industrial wastes in Southern Poland. In: Twardowska I, Allen HE, Häggblom MH (eds) Viable methods of soil and water pollution monitoring, protection and remediation. pp. 533–552. ISBN-10 1–4020-4727–4 (PB). Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    CAS  Google Scholar 

  • Valls M, González-Duarte R, Atrian S, De Lorenzo V (1998) Bioaccumulation of heavy metals with protein fusions of metallothionein to bacterial OMPs. Biochimie 80:855–861

    Article  CAS  Google Scholar 

  • Wei B, Yang L (2010) A review of heavy metal contamination in urban soils, urban road dusts and agricultural soils in China. Microchem J 94:99–107

    Article  CAS  Google Scholar 

  • Woutersen M, Belkin S, Brouwer B, van Wezel AP, Heringa MB (2011) Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources? Anal Bioanal Chem 400:915–929

    Article  CAS  Google Scholar 

  • Xiao X, Luo SL, Zeng GM, Wei WZ, Wan Y, Chen L, Guo HJ, Cao Z, Yang LX, Chen JL, Xi Q (2010) Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol 101:1668–1674

    Article  CAS  Google Scholar 

  • Zimmer D, Baum C, Leinweber P, Hrynkiewicz K, Meissner R (2009) Associated bacteria increase the phytoextraction of cadmium and zink from a metal-contaminated soil by mycorrhizal willows. Intern J Phytorem 11(2):200–213

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Hrynkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hrynkiewicz, K., Baum, C. (2014). Application of Microorganisms in Bioremediation of Environment from Heavy Metals. In: Malik, A., Grohmann, E., Akhtar, R. (eds) Environmental Deterioration and Human Health. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7890-0_9

Download citation

Publish with us

Policies and ethics