Skip to main content

Practical Ab Initio Methods for Molecular Electronic Structure Studies. I. An Overview

  • Chapter
Problem Solving in Computational Molecular Science

Part of the book series: NATO ASI Series ((ASIC,volume 500))

Abstract

An overview of practical ab initio methods for molecular electronic structure studies is given. A graphical interface, the UNICHEM computational chemistry package, is used to emphasize the various choices made in performing an electronic structure calculation and, in particular, to describe the way in which these choices affect both the utility of the results obtained and the tractability of the computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.A.M. Dirac, Proc. Roy. Soc. A123, 714 (1929)

    Google Scholar 

  2. K.G. Wilson, Nucl. Phys. B (Proc. Suppl.) 17, 82 (1990)

    Article  Google Scholar 

  3. E.A. Hylleraas, Z. Physik 48, 469 (1928)

    Article  CAS  Google Scholar 

  4. H.M. James and A.S. Coolidge, J. Chem. Phys. 1, 825 (1933)

    Article  CAS  Google Scholar 

  5. C.A. Coulson, Proc. Camb. phil. Soc. 34, 204 (1938)

    Article  CAS  Google Scholar 

  6. D.R. Hartree, W. Hartree and B. Swirles, Phil. Trans. Roy. Soc. (London) A238, 229 (1939)

    CAS  Google Scholar 

  7. B. Swirles, Proc. Roy. Soc. A152, 625 (1935).

    Google Scholar 

  8. B. Swirles, Proc. Roy. Soc. A157, 680 (1935)

    Google Scholar 

  9. H.F. Schaefer III, Quantum Chemistry. The development of ab initio methods in molecular electronic structure theory, Clarendon Press, Oxford (1984)

    Google Scholar 

  10. D.R. Hartree and A. Porter, Mem. Manchr. lit. phil. Soc. 79, 51 (1935)

    Google Scholar 

  11. D.R. Hartree, Calculating Instruments and Machines, Cambridge University Press (1950)

    Google Scholar 

  12. R. McWeeny, in Methods in Computational Chemistry 1, vii-ix (1987)

    Google Scholar 

  13. G.G. Hall, Proc. Roy. Soc. (London) A205, 541 (1951)

    Google Scholar 

  14. C.C.J. Roothaan, Rev. Mod. Phys. 23, 69 (1951)

    Article  CAS  Google Scholar 

  15. R. McWeeny, Dissertation (University of Oxford, 1948)

    Google Scholar 

  16. R. McWeeny, Nature 166, 21 (1950)

    Article  CAS  Google Scholar 

  17. S.F. Boys, Proc. Roy. Soc. (London) A200, 542 (1950)

    Google Scholar 

  18. I. Shavitt, Israel J. Chem. 33, 357 (1993)

    CAS  Google Scholar 

  19. S.F. Boys, Proc. Roy. Soc. (London) A201, 125 (1950)

    Google Scholar 

  20. J. Miller, R.H. Friedman, R.P. Hurst and F.A. Matsen, J. Chem. Phys. 27, 1385 (1957)

    Article  CAS  Google Scholar 

  21. R.K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955)

    Google Scholar 

  22. J.A. Pople and R.K. Nesbet, J. Chem. Phys. 22, 571 (1954)

    Article  CAS  Google Scholar 

  23. S.F. Boys, G.B. Cook, C.M. Reeves and I. Shavitt, Nature (London) 178, 1207 (1956)

    Article  Google Scholar 

  24. R.S. Mulliken and C.C.J. Roothaan, Proc. U.S. Natl. Acad. Sci. 45, 394 (1959)

    Article  CAS  Google Scholar 

  25. M.P. Barnett, Rev. Mod. Phys. 35, 571 (1963)

    Article  CAS  Google Scholar 

  26. E. Clementi and D.R. Davis, J. Comput. Phys. 1, 223 (1966)

    Article  Google Scholar 

  27. O. SinanoÄŸlu, Adv. Chem. Phys. 6, 315 (1964).

    Article  Google Scholar 

  28. O. Sinanoglu, Adv. Chem. Phys. 14, 237 (1969)

    Article  CAS  Google Scholar 

  29. K.J. Miller and K. Ruedenberg, J. Chem. Phys. 48, 3415 (1968).

    Google Scholar 

  30. D.M. Silver, E.L. Mehler and K. Ruedenberg, J. Chem. Phys. 52, 1174, 1181.

    Google Scholar 

  31. C.F. Bender and E.R. Davidson, Phys. Rev. 183, 23 (1969)

    Article  CAS  Google Scholar 

  32. J. Čižek, Adv. Chem. Phys. 14, 35 (1969)

    Article  Google Scholar 

  33. H.P. Kelly, Adv. Chem Phys. 14, 129 (1969)

    Article  CAS  Google Scholar 

  34. J. Gerratt and I.M. Mills, J. Chem. Phys. 49, 1719 (1968)

    Article  Google Scholar 

  35. P. Pulay, Molec. Phys. 17, 197 (1969)

    Article  CAS  Google Scholar 

  36. J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957)

    Google Scholar 

  37. J. Schulman and D.N. Kaufman, J. Chem. Phys. 53, 477 (1970)

    Article  CAS  Google Scholar 

  38. U. Kaldor, Phys. Rev. A 7, 427 (1973)

    Article  Google Scholar 

  39. S. Wilson and D.M. Silver, Phys. Rev. A 14, 1949 (1976)

    Article  CAS  Google Scholar 

  40. C. Moller and M.S. Plesset, Phys. Rev. 46, 618 (1934)

    Article  CAS  Google Scholar 

  41. J. Pople, R. Krishnan, H.B. Schlegel and J.S. Binkley, Intern. J. Quantum Chem. 14, 545 (1978)

    Article  CAS  Google Scholar 

  42. M.F. Guest and S. Wilson, in Supercomputers in Chemistry, edited by P. Lykos and I. Shavitt, ACS Symposium Series 173, American Chemical Society, Washington D.C. (1981)

    Chapter  Google Scholar 

  43. J. Almlöf, K. Faegri and K. Korsell, J. Comput. Chem. 3, 385 (1982)

    Article  Google Scholar 

  44. Part III

    Google Scholar 

  45. Part IV

    Google Scholar 

  46. M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T. Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Foresman, J. Cioslowski, B.B. Stefanov, A. Nanayakkara, M. Challacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzalaz and J.A. Pople, GAUSSIAN94, Gaussian Inc., Pittsburgh PA, 1995

    Google Scholar 

  47. UNICHEM was originally developed by Cray Research Inc. Details can be obtained from Oxford Molecular Ltd., The Medawar Centre, Oxford Science Park, Oxford OX4 4GA, England.

    Google Scholar 

  48. E.R. Davidson and D. Feller, Chem. Rev. 86, 681 (1986)

    Article  CAS  Google Scholar 

  49. Part II

    Google Scholar 

  50. N.S. Ostlund, in Personal Computers in Chemistry, American Chemical Society, Washington D.C. (1977)

    Google Scholar 

  51. C.A. Coulson, quoted in Rev. Mod. Phys. 45, 22 (1973)

    Article  Google Scholar 

  52. E.P. Wigner, in Proc. Internat. Confer Theoret. Phys., Science Council of Japan (1953)

    Google Scholar 

  53. S. Wilson, Methods in Computational Chemistry 3, 1 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wilson, S. (1997). Practical Ab Initio Methods for Molecular Electronic Structure Studies. I. An Overview. In: Wilson, S., Diercksen, G.H.F. (eds) Problem Solving in Computational Molecular Science. NATO ASI Series, vol 500. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0039-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0039-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6506-1

  • Online ISBN: 978-94-009-0039-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics