Skip to main content

Assessment of viability by MR-techniques

  • Chapter
Imaging and Intervention in Cardiology

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 173))

Abstract

Magnetic resonance techniques are in an early phase of their application to detect viable myocardium after myocardial infarction. However, magnetic resonance imaging (MRI) seems ideally suited to detect the regional wall thinning associated chronic myocardial scar [1-5]. In contrast to akinetic and thinned transmural chronic infarcts [6-9], acutely infarcted myocardium may be transmurally necrotic and akinetic but may not yet exhibit myocardial thinning [9]. Therefore, assessment of wall thickness by MRI is not sufficient to determine viability. Stimulation of residual contractility by catecholamines, which is well known from viability studies using left ventricular angiography [10], radionuclide ventriculography [11], or echocardiography [12], can also be used in conjuction with MRI to demonstrate residual viability in these patients [13]. It is also possible to employ magnetic resonance spectroscopy, especially in the setting of acute myocardial infarction, where substantial myocardial wall thinning has not yet occurred to document the presence or absence of high-energy phosphates as indicators of viable myocardium [14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akins EW, Hill JA, Sievers KW, Conti CR. Assessment of left ventricular wall thickness in healed myocardial infarction by magnetic resonance imaging. Am J Cardiol 1987; 59: 24–8.

    Article  PubMed  CAS  Google Scholar 

  2. Higgins CB, Lanzer P, Stark D et al. Imaging by nuclear magnetic resonance in patients with chronic ischemic heart disease. Circulation 1984; 69: 523–31.

    Article  PubMed  CAS  Google Scholar 

  3. Pflugfelder PW, Sechtem UP, White RD, Higgins CB. Quantification of regional myocardial function by rapid cine MR imaging. Am J Roentgenol 1988; 150: 523–9.

    CAS  Google Scholar 

  4. White RD, Holt WW, Cheitlin MD et al. Estimation of the functional and anatomic extent of myocardial infarction using magnetic resonance imaging. Am Heart J 1988; 115: 740–8.

    Article  PubMed  CAS  Google Scholar 

  5. Sechtem U, Sommerhoff BA, Markiewicz W et al. Regional left ventricular wall thickening by magnetic resonance imaging: Evaluation of normal persons and patients with global and regional dysfunction. Am J Cardiol 1987; 59: 145–51.

    Article  PubMed  CAS  Google Scholar 

  6. Roberts CS, Maclean D, Maroko P, Kloner RA. Early and late remodeling of the left ventricle after acute myocardial infarction. Am J Cardiol 1984; 54: 407–10.

    Article  PubMed  CAS  Google Scholar 

  7. Schlichter J, Hellerstein HK, Katz LN. Aneurysm of the heart. A correlative study of 102 proven cases. Medicine 1954; 33: 43–86.

    Article  PubMed  CAS  Google Scholar 

  8. Fishbein MC, Maclean D, Maroleo PR. The histopathologic evolution of myocardial infarction. Chest 1978; 73: 843–9.

    Article  PubMed  CAS  Google Scholar 

  9. Mallory GK, White PD, Salcedo-Galger J. The speed of healing of myocardial infarction: A study of the pathologic anatomy in 72 cases. Am Heart J 1939; 18: 647–71.

    Article  Google Scholar 

  10. Horn HR, Teichholz LE, Cohn PF et al. Augmentation of left ventricular contraction pattern in coronary artery disease by an inotropic catecholamine. Circulation 1974; 49: 1063–71.

    PubMed  CAS  Google Scholar 

  11. Rozanski A, Berman D, Gray R et al. Preoperative prediction of reversible myocardial asynergy by postexercise radionuclide ventriculography. N Engl J Med 1982; 307: 212–6.

    Article  PubMed  CAS  Google Scholar 

  12. Pierard LA, De Landsheere CM, Berthe C et al. Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: Comparison with positron emission tomography. J Am Coll Cardiol 1990; 15: 1021–31.

    Article  PubMed  CAS  Google Scholar 

  13. Baer FM, Voth E, Theissen P et al. Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and position emission tomography with [18F] fluorodeoxyglucose in patients with coronary artery disease. A functional and morphologic approach to the detection of residual myocardial viability. Circulation 1995; 91: 1006–15.

    PubMed  CAS  Google Scholar 

  14. Bottomley PA, Smith LS, Brazzamano S et al. The fate of inorganic phosphate and pH in regional myocardial ischemia and infarction: A noninvasive 3IP NMR study. Magn Reson Med 1987; 5: 129–42.

    Article  PubMed  CAS  Google Scholar 

  15. Braunwald E, Kloner RA. The stunned myocardium: Prolonged, postischemic ventricular dysfunction. Circulation 1982; 66: 1146–9.

    Article  PubMed  CAS  Google Scholar 

  16. Kloner RA, Allen J, Cox TA et al. Stunned left ventricular myocardium after exercise treadmill testing in coronary artery disease. Am J Cardiol 1991; 68: 329–34.

    Article  PubMed  CAS  Google Scholar 

  17. Bolli R, Zhu WX, Thornby JI et al. Time course and determinants of recovery of function after reversible ischemia in conscious dogs. Am J Physiol 1988; 254: 102–14.

    Google Scholar 

  18. Rahimtoola SH. The hibernating myocardium. Am Heart J 1989; 117: 211–21.

    Article  PubMed  CAS  Google Scholar 

  19. Bodenheimer MM, Banka VS, Hermann GA et al. Reversible asynergy. Histopathologic and electrographic correlations in patients with coronary artery disease. Circulation 1976; 53: 792–6.

    PubMed  CAS  Google Scholar 

  20. Vanoverschelde JLJ, Wijns W, Depre C et al. Mechanisms of chronic regional postischemic dysfunction in humans. Circulation 1993; 87: 1513–23.

    PubMed  CAS  Google Scholar 

  21. Tscholakoff D, Higgins CB, McNamara MT, Derugin N. Early-phase myocardial infarction: Evaluation by MR imaging. Radiology 1986; 159: 667–72.

    PubMed  CAS  Google Scholar 

  22. Rokey R, Verani MS, Bolli R et al. Myocardial infarct size quantification by MR imaging early after coronary occlusion in dogs. Radiology 1986; 158: 771–4.

    PubMed  CAS  Google Scholar 

  23. Buda AJ, Aisen AM, Juni JE et al. Detection and sizing of myocardial ischemia and infarction by nuclear magnetic resonance imaging in the canine heart. Am Heart J 1985; 110: 1284–90.

    Article  PubMed  CAS  Google Scholar 

  24. Bouchard A, Reeves RC, Cranney G et al. Assessment of myocardial infarct size by means of T2-weighted 1H nuclear magnetic resonance imaging. Am Heart J 1989; 117: 281–9.

    Article  PubMed  CAS  Google Scholar 

  25. Wisenberg G, Prato FS, Carroll SE et al. Serial nuclear magnetic resonance imaging of acute myocardial infarction with and without reperfusion. Am Heart J 1988; 115: 510–8.

    Article  PubMed  CAS  Google Scholar 

  26. McNamara MT, Higgins CB, Schechtmann N et al. Detection and characterization of acute myocardial infarction in man with use of gated magnetic resonance. Circulation 1985; 71: 717–24.

    Article  PubMed  CAS  Google Scholar 

  27. Filipchuk NG, Peshock RM, Malloy CR et al. Detection and localization of recent myocar¬dial infarction by magnetic resonance imaging. Am J Cardiol 1986; 58: 214–9.

    Article  PubMed  CAS  Google Scholar 

  28. Ryan T, Tarver RD, Duerk JL et al. Distinguishing viable from infarcted myocardium after experimental ischemia and reperfusion by using nuclear magnetic resonance imaging. J Am Coll Cardiol 1990; 15: 1355–64.

    Article  PubMed  CAS  Google Scholar 

  29. McNamara MT, Tscholakoff D, Revel D et al. Differentiation of reversible and irreversible myocardial injury by MR imaging with and without gadolinium-DTPA. Radiology 1986; 158: 765–9.

    PubMed  CAS  Google Scholar 

  30. Saeed M, Wendland MF, Takehara Y, Higgins CB. Reversible and irreversible injury in the reperfused myocardium: Differentiation with contrast material-enhanced MR imaging. Radiology 1990; 175: 633–7.

    PubMed  CAS  Google Scholar 

  31. Saeed M, Wendland MF, Masui T, Higgins CB. Myocardial infarctions on Tl- and susceptibility-enhanced MRI: Evidence for loss of compartmentalization of contrast media. Magn Res Med 1994; 31: 31–9.

    Article  CAS  Google Scholar 

  32. Guth BD, Martin JF, Heusch G, Ross JJ. Regional myocardial blood flow, function and metabolism using phosphorus-31 nuclear magnetic resonance spectroscopy during ischemia and reperfusion in dogs. J Am Coll Cardiol 1987; 10: 673–81.

    Article  PubMed  CAS  Google Scholar 

  33. Camacho SA, Lanzer P, Toy BJ et al. In vivo alterations of high-energy phosphates and intracellular pH during reversible ischemia in pigs: A 31P magnetic resonance spectroscopy study. Am Heart J 1988; 116: 701–8.

    Article  PubMed  CAS  Google Scholar 

  34. Arai AE, Pantely GA, Anselone CG et al. Active downregulation of myocardial energy requirements during prolonged moderate ischemia in swine. Circ Res 1991; 69: 1458–69.

    PubMed  CAS  Google Scholar 

  35. Pantely GA, Malone SA, Rhen WS et al. Regeneration of phosphocreatine in pigs despite continued moderate ischemia. Circ Res 1990; 67: 1481–93.

    PubMed  CAS  Google Scholar 

  36. Schulz R, Guth PD, Pieper K et al. Recruitment of inotropic reserve in moderately ischemic myocardium at the expense of metabolic recovery: A model of short-term hibernation. Circ Res 1992; 70: 1282–95.

    PubMed  CAS  Google Scholar 

  37. Menon RS, Hendrich K, Hu X, Ugurbil K. 31P NMR spectroscopy of the human heart at 4 T: Detection of substantially uncontaminated cardiac spectra and differentiation of subepicardium and subendocardium. Magn Reson Med 1992; 26: 368–76.

    Article  PubMed  CAS  Google Scholar 

  38. Gober JR, Schaefer S, Camacho SA et al. Epicardial and endocardial localized 31P magnetic resonance spectroscopy: Evidence for metabolic heterogeneity during regional ischemia. Magn Reson Med 1990; 13: 204–15.

    Article  PubMed  CAS  Google Scholar 

  39. Bottomley PA, Herfkens RJ, Smith LS, Bashore TM. Altered phosphate metabolism in myocardial infarction: P-31 MR spectroscopy. Radiology 1987; 165: 703–7.

    PubMed  CAS  Google Scholar 

  40. Rehr RB, Tatum JL, Hirsch JI et al. Reperfused-viable and reperfused-infarcted myocardium: differentiation with in vivo P-31 MR spectroscopy. Radiology 1989; 172: 53–8.

    PubMed  CAS  Google Scholar 

  41. Meese RB, Spritzer CE, Negro VR et al. Detection, characterization and functional assessment of reperfused Q-wave acute myocardial infarction by cine magnetic resonance imaging. Am J Cardiol 1990; 66: 1–9.

    Article  PubMed  CAS  Google Scholar 

  42. Johns JA, Leavitt MB, Newell JB et al. Quantitation of acute myocardial infarct size by nuclear magnetic resonance imaging. J Am Coll Cardiol 1990; 15: 143–9.

    Article  PubMed  CAS  Google Scholar 

  43. Nienaber CA,Rochau T, Chatterjee T, Nicolas V. Dobutamin-Magnet resonanz tomographic und 201-Thallium-SPECT: Nachweis von vitalem Myokard in der Postinfarktphase (Abstr). Z Kardiol 1993; 82 (Suppl 1): 17.

    Google Scholar 

  44. Atkinson DJ, Edelman RR. Cineangiography of the heart in a single breath hold with a segmented turboFLASH sequence. Radiology 1991; 178: 357–60.

    PubMed  CAS  Google Scholar 

  45. Baer FM, Smolarz K, Theissen P et al. Assessment of myocardial viability by quantification of 99 mTc-methoxyisobutyl-isonitrile uptake at rest: Comparison with parameters of myocardial viability obtained from gradient-echo magnetic resonance imaging. Eur Heart J 1994; 15: 97–107.

    PubMed  CAS  Google Scholar 

  46. Roberts CS, Maclean D, Braunwald E et al. Topographic changes in the left ventricle after experimentally induced myocardial infarction in the rat. Am J Cardiol 1983; 51: 872–6.

    Article  PubMed  CAS  Google Scholar 

  47. Sasayama S, Gallagher KP, Kemper WS et al. Regional left ventricular wall thickness early and late after coronary occlusion in the conscious dog. Am J Physiol 1981; 240: H293–9.

    PubMed  CAS  Google Scholar 

  48. Phibbs B. “Transmural” versus “subendocardial” myocardial infarction: An electrocardiographic myth. J Am Coll Cardiol 1983; 1: 561–4.

    Article  PubMed  CAS  Google Scholar 

  49. Freifeld AG, Schuster EH, Bulkley BH. Nontransmural versus transmural myocardial infarction. A morphologic study. Am J Med 1983; 75: 423–32.

    CAS  Google Scholar 

  50. Pirólo JS, Moore GW, Hutchins GM. Continuum of the thickness of surviving myocardial wall with single myocardial infarcts. Arch Pathol Lab Med 1986; 110: 382–4.

    PubMed  Google Scholar 

  51. Dubnow MH, Burchell HB, Titus JL. Postinfarction left ventricular aneurysm. A clinicomorphologic and electrocardiographic study of 80 cases. Am Heart J 1965; 70: 753–60.

    Article  PubMed  CAS  Google Scholar 

  52. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 1979; 3: 299–308.

    Article  PubMed  CAS  Google Scholar 

  53. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Myocardial viability in patients with chronic coronary artery disease and left ventricular dysfunction: Thallium-201 reinjection versus 18F-fluorodeoxyglucose. Circulation 1991; 83: 26–37.

    PubMed  CAS  Google Scholar 

  54. Parodi O, Schelbert H, Schwaiger M et al. Cardiac emission computed tomography: Underestimation of regional tracer concentration due to wall motion abnormalities. J Comput Assist Tomogr 1984; 8: 1083–92.

    Article  PubMed  CAS  Google Scholar 

  55. Wienhard K, Eriksson L, Grootoonk S et al. Performance evaluation of the positron scanner ECAT EXACT. J Comput Assist Tomogr 1992; 16: 854–863.

    Article  Google Scholar 

  56. Schelbert HR, Phelps ME, Selin C et al. Regional myocardial ischemia assessed by 18-fluoro-2-deoxyglucose and positron emission tomography. In: Heiss HW, editor. Advances in clinical cardiology. Vol. I. Quantification of myocardial ischemia. New York: Gerhard Witzstrock, 1980: 437–49.

    Google Scholar 

  57. Baer FM, Smolarz K, Jungehulsing M et al. Chronic myocardial infarction: Assessment of morphology, function, and perfusion by gradient echo magnetic resonance imaging and 99 mTc-methoxyisobutyl-isonitrile SPECT. Am Heart J 1992; 123: 636–45.

    Article  PubMed  CAS  Google Scholar 

  58. Baer FM, Smolarz K, Jungehülsing M et al. Magnetresonanztomographische Darstellung transmuraler Myokardinfarkte im Vergleich zur 99Tc-methoxyisobutyl-isonitrile-SPECT. Z Kardiol 1992; 81: 423–31.

    PubMed  CAS  Google Scholar 

  59. Perrone-Filardi P, Bacharach SL, Dilsizian V et al. Metabolie evidence of viable myocardium in regions with reduced wall thickness and absent wall thickening in patients with chronic ischemic left ventricular dysfunction. J Am Coll Cardiol 1992; 20: 161–8.

    Article  PubMed  CAS  Google Scholar 

  60. von Schulthess GK, Fisher MR, Crooks LE, Higgins CB. Gated MR imaging of the heart: Intracardiac signal in patients and healthy subjects. Radiology 1985; 156: 125–32.

    Google Scholar 

  61. Perrone-Filardi P, Bacharach SL, Dilsizian V et al. Regional left ventricular wall thickening.Relation to regional uptake of 18-fluoro-deoxyglucose and 201T1 in patients with chronic coronary artery disease and left ventricular dysfunction. Circulation 1992; 86: 1125–37.

    PubMed  CAS  Google Scholar 

  62. Schulz R, Miyazaki S, Miller M et al. Consequences of regional inotropic stimulation of ischemic myocardium on regional myocardial blood flow and function in anesthetized swine. Circ Res 1989; 64: 1116–26.

    PubMed  CAS  Google Scholar 

  63. Vatner SF. Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 1980; 47: 201–7.

    PubMed  CAS  Google Scholar 

  64. Pennell DJ, Underwood SR, Manzara CC et al. Magnetic resonance imaging during dobuta-mine stress in coronary artery disease. Am J Cardiol 1992; 70: 34–40.

    Article  PubMed  CAS  Google Scholar 

  65. Baer FM, Smolarz K, Theissen P et al. Identification of hemodynamically significant coron-ary artery stenoses by dipyridamole-magnetic resonance imaging and 99 mTc-methoxyisob-utyl-isonitrile-SPECT. Int J Card Imaging 1993; 9: 133–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sechtem, U., Baer, F.M., Voth, E., Theissen, P., Schneider, C., Schicha, H. (1996). Assessment of viability by MR-techniques. In: Nienaber, C.A., Sechtem, U. (eds) Imaging and Intervention in Cardiology. Developments in Cardiovascular Medicine, vol 173. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0115-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0115-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6538-2

  • Online ISBN: 978-94-009-0115-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics