Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 34))

Abstract

The dominant dynamic length scale in the ocean, as well as in the atmosphere, is the Rossby radius of deformation (e.g., Gill, 1982 pp. 191 – 203). In the atmosphere this length scale is the scale of the low pressure systems, i.e. about 100 –1000 km, which is referred to as the synoptic scale. In the ocean the Rossby radius of deformation varies from about 100 – 300 km in tropical waters down to 5–10 km in subpolar regions like the Norwegian Sea. Length scales such as the latter are commonly referred to as the mesoscale by meteorologists. This reference has also been adopted in the ocean, although from a dynamical point of view, it would have been natural to name it the oceanic synoptic scale. The name mesoscale is, therefore, traditionally associated with a particular range in kilometers rather than being associated with its similar dynamic atmospheric length scale. Oceanic features of the order of the Rossby deformation radius, which may be dubbed oceanic ‘weather’, are nevertheless referred to as mesoscale features. Examples of such features are upwelling jets, eddies and filaments. These features are clearly visible in almost any satellite image of the ocean surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barth, J. (1994) Short-wavelength Instabilities on Coastal jets and frontsJ. Geophys. Res. 99, 16,095–16, 115.

    Google Scholar 

  • Bleck, R. (1985) On the Conversion between mean end eddy Components of Potential and Kinetic Energy in isentropic and isopycnic coordinatesDyn. Atmos. Oceans 9, 17 – 37.

    Article  Google Scholar 

  • Bleck, R., Rooth, C, Hu, D., and Smith, L. (1992) Salinity Thermocline Transients in a wind- and Thermohaline-forced isopycnic Coordinate Model of the North AtlanticJ. Phys. Oceanogr 22, 1486 – 1505.

    Article  Google Scholar 

  • Boudra, D.B, Bleck, R., and Schott, F. (1988) A numerical model of instabilities in the Florida CurrentJ. Mar. Res 46, 715 – 751.

    Article  Google Scholar 

  • Cushman-Roisin, B., and O’Brien, J.J. (1983) The influence of bottom topography on baroclinic transportsJ. Phys. Oceanogr 13, 1600 – 1611.

    Article  Google Scholar 

  • Fukamachi, Y., McCreary, J.P., and Proehl, J.A. (1995) Instability of density fronts in layer and continuously stratified modelsJ. Geophys. Res100, 2559 – 2577.

    Google Scholar 

  • Gill, A.E. (1982) Atmospheric-Ocean Dynamics Academic Press, 662 p.

    Google Scholar 

  • Fiúza, A.F.G. (1983) Upwelling patterns off Portugal, in E. Suess and J. Thiede (eds)Coastal Upwelling, Part A, Plenum Publ. Co., pp. 85 – 98.

    Google Scholar 

  • Fiúza, A.F.G., and Sousa, F.M. (1992) Mesoscale variability on the Portuguese coastal ocean studied with satellite imageryAnnales Geophysicae 10(Suppl.II), C208.

    Google Scholar 

  • Flament, P., Armi L., and Washburn, L. (1985) The evolving structure of an upwelling filament. J. Geophys. Res 90, 11,765–11, 778.

    Article  Google Scholar 

  • Haidvogel, D.B., Beckmann, A., and Hedstrom, K.S. (1991) Dynamical simulations of filament formation and volution in the Coastal Transition Zone. J. Geophys. Res 96(C8), 15,017–15, 040.

    Article  Google Scholar 

  • Hackett, B., and Røed, L.P. (1994) Numerical modeling of the Halten Bank area: a validation studyTellus 46A, 113 – 133.

    Google Scholar 

  • Haynes, R., Barton, E.D., and Pilling, I. (1993) Development, persistence and variability of upwelling filaments ff the Atlantic Coast of the Iberian PeninsulaJ. Geophys. Res 98, 22,681–22, 692.

    Article  Google Scholar 

  • Holland, W.R., and Lin, L.B. (1975a) On the generation of mesoscale eddies and their contribution to the general ocean circulation. I. A preliminary numerical experimentJ. Phys. Oceanogr 5, 642 – 657.

    Article  Google Scholar 

  • Holland, W.R., and Lin, L.B. (1975b) On the generation of Mesoscale eddies and their contribution to the general ocean circulation. II. A parameter studyJ. Phys. Oceanogr 5, 658 – 669.

    Article  Google Scholar 

  • Hurlburt, H., and Thompson, J.D. (1980) A numerical study of the Loop Current intrusion and eddy sheddingJ. Phys. Oceanogr 10, 1611 – 1651.

    Article  Google Scholar 

  • Lorenz, E.N. (1955) Available potential energy and the maintenance of the general circulationTellus 7, 157 – 167.

    Article  Google Scholar 

  • Luther, M.E., and O’Brien, J.J. (1985) A model of the seasonal circulation of the Arabian Sea forced by observed windsProg. Oceanogr 14, 353 – 385.

    Article  Google Scholar 

  • McCreary, J.P., and Kundu, P.K. (1988) A numerical investigation of the Somali Current during the Southwest MonsoonJ. Mar. Res 46, 25 – 58.

    Article  Google Scholar 

  • McCreary, J.P., and Yu, Z. (1992) Equatorial dynamics in a 2l/2–layer modelProg. Oceanogr 29, 61 – 132.

    Article  Google Scholar 

  • McCreary, J.P., Fukamachi, Y., and Kundu, P.K. (1991) A numerical investigation of jets and eddies near an eastern ocean boundaryJ. Geophys. Res 96, 2515 – 2534.

    Article  Google Scholar 

  • O’Brien, J.J., Clancy, R.M., Clarke, A.J., Crepon, M., Elsburry, R., Gammelsrød, T., Mac Vean, M., Røed, L.P., and Thompson, J.D. (1977) Upwelling in the ocean: two- and three-dimensional models of upper ocean dynamics and variability, in E.B. Kraus (ed.)Modelling and Prediction of the Upper Layers of the Ocean, Pergamon Press, 177 – 228.

    Google Scholar 

  • Røed, L.P. (1995a) Documentation of the Oslo Multilayered Mesoscale Ocean Model — OSMOM Part 1: The governing equations. Research Report No. 24, Norwegian Meteorological Institute.

    Google Scholar 

  • Røed, L.P. (1995b) Reduced Gravity Modeling of the MORENA Region — Description of the multilayered reduced gravity model and some initial results. MORENA Technical and Scientific Report No. 9, Instituto de Oceanografia, Universidade de Lisboa, Portugal, 17.

    Google Scholar 

  • Røed, L.P. (1995c) Energy partition and conversion in mesoscale ocean modelsResearch Report (in prep.), Norwegian Meteorological Institute.

    Google Scholar 

  • Røed, L.P., Hackett, B., Gjevik, B., and Eide, L.I. (1995) A review of the Metocean Modeling Project (MOMOP) Part 1: Model comparison study, in D.R. Lynch and A.M. Davies (eds), Quantitative Skill Assessment for Coastal Ocean Models, Coastal and Estuarine Studies Volume 47, American Geophysical Union, pp. 285 – 305.

    Google Scholar 

  • Semtner, A.J., and Chervin, R.M. (1992) Ocean general circulation from a global eddy-resolving modelJ. Geophys. Res 97, 5493 – 5550.

    Article  Google Scholar 

  • Schopf, P.S., and Cane, M.A. (1983) On equatorial dynamics, mixed layer physics and sea surface temperatureJ. Phys. Oceanogr 13, 917 – 935.

    Article  Google Scholar 

  • Sousa, F.M., and Fiöza, A.F.G. (1989) Recurrence of upwelling filaments off northern Portugal as revealed by satellite imagery, in the proceedings of the 4th AVHRR data users’ meeting, EUMETSAT, Darmstadt, pp. 219–223.

    Google Scholar 

  • Stern, M. (1975) Ocean Circulation Physics, International Geophysics Series Volume 19, Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Røed, L.P. (1996). Modelling Mesoscale Features in the Ocean. In: Grue, J., Gjevik, B., Weber, J.E. (eds) Waves and Nonlinear Processes in Hydrodynamics. Fluid Mechanics and Its Applications, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0253-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0253-4_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6597-9

  • Online ISBN: 978-94-009-0253-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics