Skip to main content

Ecological Bases and Problems Associated with the Implementation of Agricultural Remedial Actions

  • Chapter
Radioecology and the Restoration of Radioactive-Contaminated Sites

Part of the book series: NATO ASI Series ((ASEN2,volume 13))

Abstract

In the event of a major nuclear accident, involving the dispersion of radioactive material and a widespread contamination of the environment, the first concern of the responsible authorities will be to assess the radiological consequences for the population living in the affected areas, so that essential protective measures can be taken without delay. The main purpose of these measures is to limit the doses received from external and internal radiation to an acceptable level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Willrodt C. (1993), Agrotechnical countermeasures to be applied before and during deposition of radioactive fallout, Sci. Tot. Environ., 137:21–29.

    Article  CAS  Google Scholar 

  2. Segal M.G. (1993), Agricultural countermeasures following deposition of radioactivity after a nuclear acci dent, Sci. Tot. Environ, 137: 31–48.

    Article  CAS  Google Scholar 

  3. International Commission on Radiological Protection (1991), Recommendations of the International Commission on Radiological Protection, Annals of the ICRP 21: 1–3, Pergamon Press, Oxford.

    Google Scholar 

  4. Vandecasteele C.M., Zeevaert Th. & Kirchmann R. (1991), Factors influencing the transfer of radionuclides in agricultural food chains, in “Anticarcinogenesis and radiation protection” 2nd Ed., O.F. Nygaard & A.C. Upton Eds., Plenum Press, New-York, 181–199.

    Chapter  Google Scholar 

  5. Middleton L.J. (1959), Radioactive strontium and caesium in edible parts of crop plants after foliar contamination, Int. J. Rad. Biol., 1:387–402.

    Article  CAS  Google Scholar 

  6. Kirchmann R., Fagniart E. and Van Puymbroeck S. (1966), Studies on foliar contamination by radiocaesium and radiostrontium, in Radiological concentration processes, Pergamon Press, Oxford—New York, 475–483.

    Google Scholar 

  7. Tukey H.B. (1970), The leaching of substances from plants, Ann. Rev. Plant Physiol., 21: 305–324.

    Article  CAS  Google Scholar 

  8. Eisenbud M., Krauskopf K., Penna Franca E., Lei W., Ballad R., Linsalata P. and Fujimori K. (1984), Natural analogues for the transuranic actinide elements: an investigation in Minas Gérais, Brazil, Environ. Geol. Water Sci., 6: 1–9.

    Article  CAS  Google Scholar 

  9. Vandecasteele C.M., Fagniart E., Colard J., Culot J.P. and Kirchmann R. (1988), Transfer of radiocaesium deposited after the Chernobyl accident to agricultural plants, in Impact des accidents d’origine nucléaire sur l’environnement, CEN-CEA Cadarache, Vol. 1: D179-D187).

    Google Scholar 

  10. Schulz R.K. (1965), Soil chemistry of radionuclides, Health Phys., 11:1317–1324

    Article  PubMed  CAS  Google Scholar 

  11. Bair W.J. (1960), Radioisotope toxicity from pulmonary absorption, in Radioisotopes in the biosphere, Caldecott R.S. & Snyder L.A. Eds, University of Minneapolis, Minnesota, Comstock Publishing Associates, Ithaca and London.

    Google Scholar 

  12. Baes C.F. III, Garten C.T. Jr, Taylor F.G. and Witherspoon J.P. (1986), The long-term problems of contaminated land: sources, impacts and countermeasures, Oak Ridge National Laboratory, Environmental Science Division, Publication 2593, ORNL-6146.

    Book  Google Scholar 

  13. Nisbet A.F., Konoplev A. V., Shaw G., Lembrechts J.F., Merckx R., Smolders E., Vandecasteele C.M., Lônsjô H., Carini F. and Burton O. (1993), Application of fertilisers and améliorants to reduce soil to plant transfer of radiocaesium and radiostrontium in the medium to long term—a summary, Sci. Tot. Env., 137: 173–182.

    Article  CAS  Google Scholar 

  14. Marti J.M., Arapis G. & Iranzo E. (1990), Evaluación contremedidas para la recuperación de suelo agrícola, in “Environmental contamination following a major nuclear accident” Vol. II, IAEA Vienna, IAEA-SM-306/103:111–127.

    Google Scholar 

  15. Legrand B., Fache P., Hamoniaux M., Camus H. & Gauthier D. (1990), Premiers résultats expérimentaux du programme RESSAC sur les essais in situ de décontamination/fixation et études de migration des radionuclides dans les sols, IAEA Vienna, IAEA-SM-316/33:507.

    Google Scholar 

  16. Jouve A., Schulte E., Bon P. & Cardot A.L. (1993), Mechanical and physical removing of soil and plants as agricultural mitigation techniques, Sci. Tot. Environ, 137:65–79.

    Article  CAS  Google Scholar 

  17. Sandalls F. J. (1990), Review of countermeasures used in agriculture following a major nuclear accident, in “Environmental contamination following a major nuclear accident” Vol. II, IAEA Vienna, IAEA-SM- 306/44:129–140.

    Google Scholar 

  18. Kirchmann R. (1990), Agricultural countermeasures taken in the Chernobyl region and evaluation of the results, International Union of Radioecology, Report for Contract 88-ET-006 with CE/DGXI/A1.

    Google Scholar 

  19. Hove K., Strand P., Salbu B., Oughton D., Astasheva N., Vasiliev A., Ratnikov A., Jigareva T., Averin V., Firsakova S., Crick M.J. & Richards J.I. (1995), Use of caesium binders to reduce radiocaesium contamination of milk and meat in Ukraine, Belarus and the Russian Federation, Int. Symp. on “Environmental impact of radioactive releases”, IAEA Vienna 8–12 May 1995, Extended Synopses, IAEA-SM-339/153: 75–76.

    Google Scholar 

  20. Zach R. and Mayoh K.R. (1984), Soil ingestion by cattle: a neglected pathway, Health Phys., 46:426–431.

    PubMed  CAS  Google Scholar 

  21. Baes C.F III. and Sharp R.D. (1983), A proposal for estimation of soil leaching and leaching constants for use in assessment models, J. Environ. Qual., 12: 17–28.

    Article  CAS  Google Scholar 

  22. Hvinden T., Lillegraven A. & Lillesaeter O. (1964), Passage of a radioactive cloud over Norway November 1962, Nature, 202:950–952.

    Article  PubMed  CAS  Google Scholar 

  23. Zach R. (1985), Contribution of inhalation by food animals to man’s ingestion dose, Health Phys., 49:737–745.

    Article  PubMed  CAS  Google Scholar 

  24. Stara J.F., Nelson N.S., Della Rosa R.J. and Bustad L.K. (1971), Comparative metabolism of radionuclides in mammals: a review, Health Phys., 20: 113–137.

    Article  PubMed  CAS  Google Scholar 

  25. Coughtrey P.J., Jackson D. and Thorne M.C. (1985), Radionuclide distribution and transport in terrestrial and aquatic ecosystems: a compendium of data, A. A. Balkema, Rotterdam—Boston.

    Google Scholar 

  26. Kirchmann R., Bell J.N.B., Coughtrey P.J., Frissel M., Hakonson T.E., Hanson W.C., Horrill D., Howard B.J., Lane L.J., Myttenaere C., Robison W.L., Ronneau C., Shaw G., Schell W.R., Van den Hoek J., Konoplyov A & Zezina N. (1993), Terrestrial pathways, in Radioecology after Chernobyl, SCOPE 50 Warner F. & Harrison R.M. Eds., John Wiley & Sons, Chichester, New-York, Brisbane, Toronto, Singapore: 101–177.

    Google Scholar 

  27. Gerber G.B., Van Hees M., Garten C.T. Jr, Vandecasteele C.M., Vankerkom J., Van Bruwaene R., Kirchmann R., Colard J. and Cogneau M. (1989), Technetium absorption and turnover in monogastric and polygastric animals, Health Phys., 58: 337–343.

    Google Scholar 

  28. Sullivan M.F., Garland T.R., Cataldo D.A. and Schreckhise R.G. (1979), Absorption of plant-incorporated nuclear fuel cycle elements from the gastro-intestinal tract, in Biological implications of radionuclides released from nuclear industries, IAEA Vienna, IAEA-SM-237/58, Vol.1:447–457.

    CAS  Google Scholar 

  29. Vandecasteele C.M., Garten C.T. Jr, Van Bruwaene R., Janssens J., Kirchmann R. and Myttenaere C. (1986), Chemical speciation of technetium in soil and plants: impact on soil-plant-animal transfer, in Speciation of fission and activation products in the environment, R.A. Bulman and J.R. Cooper Eds., Elsevier Applied Science Publishers, London—New York, 368–381.

    Google Scholar 

  30. Sullivan M.F., Garland T.R., Cataldo D.A., Wildung R.E. and Drucker H. (1980), Absorption of plutonium from the gastrointestinal tract of rats and guinea pigs after ingestion of alfalfa containing Pu-238, Health Phys., 38: 215–221.

    PubMed  CAS  Google Scholar 

  31. Kirchmann R., Charles P., Van Bruwaene R. and Remy J. (1975), Distribution of tritium in the different organs of calves and pigs after ingestion of various tritiated feeds, Current Topics in Radiation Research Quaterly, 12:291–312.

    Google Scholar 

  32. Wilson D.W., Ward G.M. and Johnson J.E. (1969), A quantitative model of the transport of Cs-137 from fallout to milk, Environ. Contam. Radioact. Mater., Proc. Semin., Vienna.

    Google Scholar 

  33. Eisenbud M. (1987), Environmental radioactivity from natural, industrial and military sources 3rd edition, Academic press Inc., Harcourt Brace Jovanovich Publ., New-york, 475pp.

    Google Scholar 

  34. Sullivan M.F. and Ruemmler P.S. (1988), Absorption of U-233, Np-237, Pu-238, Am-241 and Cm-244 from the gastrointestinal tracts of rats fed an iron-deficient diet, Health Phys., 54: 311–316.

    Article  PubMed  CAS  Google Scholar 

  35. Jones B.-E.V. (1983), Metabolism of technetium in goats, Int. J. Appl. Radiat. Isot., 34: 837–839.

    Article  CAS  Google Scholar 

  36. Helman J., Turner R.J., Fox F.C. and Baum B.J. (1987),99mTc-pertechnetate uptake in parotid acinar cells by the Na+K+/Cl- co-transport system, J. Clin. Invest., 79:1310–1313.

    Article  PubMed  CAS  Google Scholar 

  37. Lacourly G., Savy C., Lehr J. and Kirchmann R. (1971), Relations entre la contamination de la viande de bovin et celle du lait par le radiocesium, Health Phys., 21:793–802.

    Article  PubMed  CAS  Google Scholar 

  38. Mraz F.R. and Eisele G.R. (1977), Gastrointestinal absorption, tissue distribution and excretion of Nb-95 in newborn and weanling swine and sheep, Radiat. Res., 72:533–536.

    Article  PubMed  CAS  Google Scholar 

  39. Sullivan M.F. (1980), Absorption of actinide elements from the gastrointestinal tract of neonatal animals, Health Phys., 38: 173–185

    Article  PubMed  CAS  Google Scholar 

  40. Beresford N.A., Lamb C.S., Mayes R.W., Howard B.J. and Colgrove P.M. (1989), The effect of treating pastures with bentonite on the transfer of Cs-137 from grazed herbage to sheep, J. Environ. Radioactivity, 9: 251–264.

    Article  CAS  Google Scholar 

  41. Howard B.J., Beresford N.A., Burrow L., Shaw P.V. and Curtis E.J.C. (1987), A comparison of caesium-137 and 134 activity in sheep remaining on upland areas contaminated by Chernobyl fallout with those removed to less active lowland pasture, J. Soc. Radiol. Prot., 7: 71–73.

    Article  CAS  Google Scholar 

  42. Vankerkom J., Van Hees M., Vandecasteele C.M., Colard J., Culot J.P. and Kirchmann R. (1988), Transfer to farm animals (ruminants) and their products of Cs-134, Cs-137 and 1–131 after the Chernobyl accident, in Impact des accidents d’origine nucléaire sur l’environnement, CEN-CEA Cadarache, Vol. 2: E111–E119.

    Google Scholar 

  43. Howard B.J. and Beresford N.A. (1989), Chernobyl radiocaesium in upland sheep farm ecosystems, Br. Vet. J., 145:212–219.

    PubMed  CAS  Google Scholar 

  44. Vandecasteele C.M., Van Hees M., Culot J.P. and Vankerkom J. (1989), Radiocaesium metabolism in pregnant ewes and their progeny, Sci. Tot. Environ., 85: 213–223.

    Article  CAS  Google Scholar 

  45. Ward G.M. & Johnson J.E. (1986), Validity of the term transfer coefficient, Health Phys., 50:411–414.

    PubMed  CAS  Google Scholar 

  46. Ng Y.C. (1982), A review of transfer factors for assessing the dose from radionuclides in agricultural products, Nucl. Safety, 23: 57–71.

    CAS  Google Scholar 

  47. Hove K. (1993), Chemical methods for reduction of the transfer of radionuclides to farm animals in semi-natural environments, Sci. Tot. Environ., 137:235–248.

    Article  CAS  Google Scholar 

  48. Hove K., Strand P., Voigt G., Jones B.E.V., Howard B.J., Segal M.G., Pollaris K. & Pearce J. (1993), Countermeasures for reducing radioactive contamination of farm animals and farm animal products, Sci. Tot. Environ., 137:261–271.

    Article  CAS  Google Scholar 

  49. Howard B.J. (1993), Management methods of reducing radionuclide contamination of animal food products in semi-natural ecosystems, Sci. Tot. Environ., 137:249–260.

    Article  CAS  Google Scholar 

  50. Jones B.-E. V. (1993), Management methods of reducing radionuclide contamination of animal food products, Sci. Tot. Environ., 137:227–233.

    Article  CAS  Google Scholar 

  51. Voigt G. (1993), Chemical methods to reduce the radioactive contamination of animals and their products in agricultural ecosystems, Sci. Tot. Environ., 137:205–225.

    Article  CAS  Google Scholar 

  52. Van der Borght O., Colard J., Van Puymbroeck S. and Kirchmann R. (1966), Radiocontamination from milk in piglets (swine): influence of sodium alginate on the Sr-85/Cs-134 ratio of the body burden and on the comparative Sr-85/Ca-47 absorption, in Radioecological concentration processes, Pergamon Press, Oxford—New York, 589–593.

    Google Scholar 

  53. Thompson J.C. Jr, Wentworth R. A. and Comar C.L. (1971), Control of fallout contamination in the postattack diet: in survival of food crops and livestock in the event of a nuclear war, Proc. Symp. Brookhaven National Laboratory, Upton, New York, Sept. 1970, B.W. Benson and A.H. Sparrow Eds., 566–595.

    Google Scholar 

  54. Aarkrog A. (1975), Radionuclide levels in mature grain related to radiostrontium content and time of direct contamination, Health Phys., 28: 557–562.

    Article  PubMed  CAS  Google Scholar 

  55. Nishita H., Romney E.M. and Larson K.H. (1961), Uptake of radioactive fission products by crop plants, J. Agric. Food Chem., 9: 101.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Vandecasteele, C.M., Burton, O., Kirchmann, R. (1996). Ecological Bases and Problems Associated with the Implementation of Agricultural Remedial Actions. In: Luykx, F.F., Frissel, M.J. (eds) Radioecology and the Restoration of Radioactive-Contaminated Sites. NATO ASI Series, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0301-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0301-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6620-4

  • Online ISBN: 978-94-009-0301-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics