Skip to main content

Abstract

Studies on the uptake of radioactively-labelled 5-hydroxytryptamine (5-HT) have revealed the accumulation of this biogenic amine in a number of different tissues. In many instances this accumulation of 5-HT represents a temperature-dependent, saturable uptake process which can be inhibited by metabolic inhibitors and by certain selectively-acting compounds. These observations indicate the presence of specific carrier or transport systems involved in the active transport of 5-HT into specific tissue elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maron R, Kanner B, Schuldiner S (1979): The role of a transmembrane pH gradient in 5-hydroxytryptamine uptake by synaptic vesicles from rat brain. FEBS Letts 98: 237–240.

    Article  CAS  Google Scholar 

  2. Wilkins JA, Greenawalt JW, Huang L (1978): Transport of 5-hydroxytryptamine by dense granules from porcine platelets. J Biol Chem253: 6260–6265.

    CAS  PubMed  Google Scholar 

  3. Rudnick G, Fishkes H, Nelson PJ, Schuldiner S (1980): Evidence for two distinct serotonin transport systems in platelets. J Biol Chem255: 3638–3641.

    CAS  PubMed  Google Scholar 

  4. Pletscher A, Da Prada M, Berneis KH, Tranzer JP (1971): New aspects on the storage of 5-hydroxytryptamine in blood platelets. Experientia27: 993–1120.

    Article  CAS  PubMed  Google Scholar 

  5. Scherman D (1986): Dihydrotetrabenazine binding and monoamine uptake in mouse brain regions. J Neurochem47: 331–339.

    Article  CAS  PubMed  Google Scholar 

  6. Darchen F, Scherman D, Laduron PM, Henry J-P (1988): Ketanserin binds to the monoamine transporter of chromaffin granules and of synaptic vesicles. Mol Pharmacol33: 672–677.

    CAS  PubMed  Google Scholar 

  7. Kanner BI (1983): Bioenergetics of neurotransmitter transport. Biochim Biophys Acta726: 293–316.

    Article  CAS  PubMed  Google Scholar 

  8. Njus D, Radda GK (1978): Bioenergetic processes in chromaffin granules: a new perspective on some old problems. Biochim Biophys Acta463: 219–244.

    Article  CAS  PubMed  Google Scholar 

  9. Angelides KJ (1980): Transport of catecholamines by native and reconstituted rat heart synaptic vesicles. J Neuro chem35: 949–962.

    CAS  Google Scholar 

  10. Greene LA, Rein G (1977): Release, storage and uptake of catecholamines by a clonal cell line of nerve growth factor (NGF) responsive pheochromocytoma cells. Brain Res129: 247–263.

    Article  CAS  PubMed  Google Scholar 

  11. Da Prada M, Obrist R, Pletscher A (1975): Discrimination of monoamine uptake by membranes of adrenal chromaffin granules. Br J Pharmacol53: 257–265.

    Article  PubMed  Google Scholar 

  12. Sneddon JM (1973): Blood platelets as a model for monoamine-containing neurones. Prog Neurobiol1: 151–198.

    Article  CAS  PubMed  Google Scholar 

  13. Stahl SM, Meltzer HY (1978): A kinetic and pharmacological analysis of 5-hydroxytrypt- amine transport by human platelets and platelet storage granules: comparison with central serotonergic neurons.J Pharmacol Exp Ther205: 118–132.

    CAS  Google Scholar 

  14. Bogdanski DF, Tissari AH, Brodie BB (1970): Mechanism of transport and storage of biogenic amines. III. Effects of sodium and potassium on kinetics of 5-hydroxytryptamine and noradrenaline transport by rabbit synaptosomes. Biochim Biophys Acta219: 189–199.

    Article  CAS  PubMed  Google Scholar 

  15. Shaskan EG, Snyder SH (1970): Kinetics of serotonin accumulation into slices from rat brain. Relationship to catecholamine uptake. J Pharmacol Exp Ther175: 404–418.

    CAS  PubMed  Google Scholar 

  16. Gershon MD, Jonakait GM (1979): Uptake and release of 5-hydroxytryptamine by enteric 5-hydroxytryptaminergic neurones: effects of fluoxetine (Lilly 110140) and chlorimipramine. Br J Pharmacol66: 7–9.

    Article  CAS  PubMed  Google Scholar 

  17. Suddith RL, Hutchinson HT, Haber B (1978): Uptake of biogenic amines by glial cells in culture. 1. A neuronal-like transport of serotonin. Life Sci22: 2179–2188.

    Article  CAS  PubMed  Google Scholar 

  18. Kimelberg HK (1986): Occurrence and functional significance of serotonin and catecholamine uptake by astrocytes. Biochem Pharmacol35: 2273–2281.

    Article  CAS  PubMed  Google Scholar 

  19. Gripenberg J (1976): Inhibition by reserpine, guanethidine and imipramine of the uptake of 5-hydroxytryptamine by rat peritoneal mast cells in vivo. Acta Physiol Scand 96: 407–416.

    Article  CAS  PubMed  Google Scholar 

  20. Bosin TR, Lahr PD (1981): Mechanisms influencing the disposition of serotonin in mouse lung. Biochem Pharmacol30: 3187–3193.

    Article  CAS  PubMed  Google Scholar 

  21. Raisman R, Langer SZ (1983): Specific high affinity [3H]imipramine binding sites in rat lung are related with a non-neuronal uptake site for serotonin. Eur J Pharmacol94: 345–348.

    Article  CAS  PubMed  Google Scholar 

  22. Stahl SM (1977): The human platelet: a diagnostic and research tool for the study of biogenic amines in psychiatric and neurologic disorders. Arch Gen Psychiat 34: 509–516.

    Article  CAS  PubMed  Google Scholar 

  23. Segonzac A, Tateishi T, Langer SZ (1984): Saturable uptake of [3H]tryptamine in rabbit platelets is inhibited by 5-hydroxytryptamine uptake blockers. Naunyn-Schmiedeberg’s Arch Pharmacol328: 33–37.

    Article  CAS  Google Scholar 

  24. Ross SB, Ask AL (1980): Structural requirements for uptake into serotonergic neurons. Acta Pharmacol Toxicol46: 270–277.

    Article  CAS  Google Scholar 

  25. Da Prada M, Cesura AM, Launay JM, Richards JG (1988): Platelets as a model for neurones. Experientia44: 115–126.

    Article  PubMed  Google Scholar 

  26. Thoa NB, Ecclestone D, Axelrod J (1969): The accumulation of 14C-serotonin in the guinea-pig vas deferens. J Pharmacol Exp Ther169: 68–73.

    CAS  PubMed  Google Scholar 

  27. Lindström P, Sehlin J, Täljedal I-B (1980): Characteristics of 5-hydroxytryptamine transport in pancreatic islets. Br J Pharmacol68: 773–778.

    Article  PubMed  Google Scholar 

  28. Verbeuren TJ, Jordaens FH, Herman AG (1983): Accumulation and release of [3H]5- hydroxytryptamine in saphenous veins and cerebral arteries of the dog. J Pharmacol Exp Ther226: 579–588.

    CAS  PubMed  Google Scholar 

  29. Ducis I, Di Stefano V (1980): Characterization of serotonin uptake in isolated pinealocyte suspensions. Mol Pharmacol18: 447–454.

    CAS  PubMed  Google Scholar 

  30. Talvenheimo J, Nelson PJ, Rudnick G (1979): Mechanism of imipramine inhibition of platelet 5-hydroxytryptamine transport. J Biol Chem254: 4631–4635.

    CAS  PubMed  Google Scholar 

  31. Nelson PJ, Rudnick G (1982): The role of chloride ion in platelet serotonin transport. J Biol Chem257: 6151–6155.

    CAS  PubMed  Google Scholar 

  32. Ross SB, Helder D (1977): Efflux of 5-hydroxytryptamine from synaptosomes of rat cerebral cortex. Acta Physiol Scand99: 27–36.

    Article  CAS  PubMed  Google Scholar 

  33. Keyes SR, Rudnick G (1982): Coupling of transmembrane proton gradients to platelet serotonin transport. J Biol Chem257: 1172–1176.

    CAS  PubMed  Google Scholar 

  34. Jauch P, Läuger P (1986): Electrogenic properties of the sodium-alanine cotransporter in pancreatic acinar cells: II. Comparison with transport models. J Memb Biol94: 117–127.

    Article  CAS  Google Scholar 

  35. Jauch P, Läuger P (1988): Kinetics of the Na+/alanine cotransporter in pancreatic acinar cells. Biochim Biophys Acta939: 179–188.

    Article  CAS  PubMed  Google Scholar 

  36. Hytell J (1982): Citalopram: pharmacological profile of a specific serotonin uptake inhibitor with antidepressant activity. Prog Neuro-Psychopharmacol & Biol Psychiat6: 277–295.

    Article  Google Scholar 

  37. Haefely W, Schaffner R, Burkard WP, Da Prada M, Kellar HH, Pole P, Richards JG (1978): Ro 11-2465, a potent and selective inhibitor of 5-hydroxytryptamine uptake. 11th C.I.N.P. Congress, Vienna, July abstracts p. 95.

    Google Scholar 

  38. Thomas DR, Nelson DR, Johnson AM (1987): Biochemical effects of the antidepressant paroxetine, a specific 5-hydroxytryptamine uptake inhibitor. Psychopharmacology93: 193–200.

    Article  CAS  PubMed  Google Scholar 

  39. Scatton B, Claustre Y, Graham D, Dennis T, Serrano A, Arbilla S, Pimoule C, Schoemaker H, Bigg D, Langer SZ (1988): SL 81.0385: a novel selective and potent serotonin uptake inhibitor. Drug Dev Res12: 29–40.

    Article  CAS  Google Scholar 

  40. Le Fur G, Uzan A (1977): Effects of 4-(3-indolyl-alkyl)-piperidine derivatives on uptake and release of noradrenaline, dopamine and 5-hydroxytryptamine in rat brain synaptosomes, rat heart and human blood platelets. Biochem Pharmacol26: 497–503.

    Article  PubMed  Google Scholar 

  41. Stark P, Fuller RW, Wong DT (1985): The pharmacologic profile of fluoxetine. J Clin Psychiat46: 7–13.

    CAS  Google Scholar 

  42. Claassen V (1983): Review of the animal pharmacology and pharmacokinetics of fluvoxamine. Br J Clin Pharmacol 15: 349S–355S.

    Article  CAS  Google Scholar 

  43. Graham D, Langer SZ (1988): The neuronal sodium-dependent serotonin transporter: studies with [3H]imipramine and [3H]paroxetine, pp. 367–391 in: Osborne NN, Hamon M (eds), Neuronal Serotonin. John Wiley and Sons Ltd.

    Google Scholar 

  44. Langer SZ, Moret C, Raisman R, Dubocovich ML, Briley MS (1980): High affinity [3H]imipramine binding in rat hypothalamus is associated with the uptake of serotonin but not norepinephrine. Science210: 1133–1135.

    Article  CAS  PubMed  Google Scholar 

  45. Langer SZ, Briley M, Raisman R, Henry J-F, Morselli PL (1980): Specific [3H]imipra- mine binding in human platelets: influence of age and sex. Naunyn-Schmiedeberg’s Arch Pharmacol313: 189–194.

    Article  CAS  Google Scholar 

  46. Habert E, Graham D, Tahraoui L, Claustre Y, Langer SZ (1985): Characterization of [3H] paroxetine binding to rat cortical membranes. Eur J Pharmacol118: 107–114.

    Article  CAS  PubMed  Google Scholar 

  47. Segonzac A, Schoemaker H, Langer SZ (1987): Temperature-dependence of drug interaction with the platelet 5-HT transporter: a clue to the imipramine selectivity paradox. J Neurochem48: 331–339.

    Article  CAS  PubMed  Google Scholar 

  48. Habert E, Graham D, Langer SZ (1986): Solubilization and characterization of the 5-hydroxytryptamine transporter complex from rat cerebral cortical membranes. Eur J Pharmacol122: 197–204.

    Article  CAS  PubMed  Google Scholar 

  49. Goodwin FK, Post RM (1983): 5-hydroxytryptamine and depression: a model for the interaction of normal variance with pathology. Br J Clin Pharmacol 15: 393S–405S.

    Article  CAS  Google Scholar 

  50. Shopsin B, Gershon S, Goldstein M, Friedman E, Wilk S (1975): The use of synthesis inhibitors in defining a role for biogenic amines during imipramine treatment in depressed patients. Psychopharmacol Commun1: 239–249.

    CAS  PubMed  Google Scholar 

  51. Shopsin B, Friedman E, Gershon S (1976): Parachlorophenylalanine reversal of trancypromine effects in depressed patients. Arch Gen Psychiat33: 811–819.

    Article  CAS  PubMed  Google Scholar 

  52. Stark P, Hardison CD (1985): A review of multi-centered outpatient imipramine and placebo controlled studies of fluoxetine in the treatment of major depressive disorders. J Clin Psychiatry46: 53 - 58.

    CAS  PubMed  Google Scholar 

  53. Penfield P, Ward A (1986): Fluvoxamine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs 32: 313 –334.

    Article  Google Scholar 

  54. Anderson J, Bech P, Benjaminsen S et al. (1986): Citalopram: clinical effect profile in comparison with clomipramine. A controlled multicenter study. Psychopharmacology90: 131 - 138.

    Google Scholar 

  55. Simpson RJ, Lawton DJ, Watt MH, Tiplady B (1981): Effect of zimelidine, a new antidepressant, on appetite and body weight. Br J Clin Pharmacol11: 96–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Smedgegaard J, Christiansen P, Skrumsager B (1981): Treatment of obesity by femoxetine, a selective 5-HT uptake inhibitor. Int J Obesity5: 377–378.

    Google Scholar 

  57. Ferguson JM (1986): Fluoxetine induced weight loss in non-depressed overweight humans. Alimentazione Nutrizione Metabolismo7: (2) 19.

    Google Scholar 

  58. Naranjo CA, Sellers EM, Roach CA, Woodley DV, Sanchez-Craig M, Sykora K (1984): Zimelidine-induced variations in alcohol intake by nondepressed heavy drinkers. Clin Pharmacol Ther35: 373–381.

    Article  Google Scholar 

  59. Naranjo CA, Sellers EM, Sullivan JT, Woodley DV, Sanchez-Craig M, Sykora K (1987): The serotonin uptake inhibitor citalopram attenuates ethanol intake. Clin Pharmacol Ther 41: 266–214.

    Article  CAS  PubMed  Google Scholar 

  60. Flood JF, Cherkin A (1987): Fluoxetine enhances memory processing in mice. Psychopharmacology93: 36–43.

    Article  CAS  PubMed  Google Scholar 

  61. Altman HJ, Nordy DA, Ögen SV (1984): Role of serotonin in memory: facilitation by alaproclate and zimelidine. Psychopharmacology84: 496–502.

    Article  CAS  PubMed  Google Scholar 

  62. Gabizon R, Schuldiner S (1985): The amine transporter from bovine chromaffin granules. J Biol Chem 260: 3001 -3005.

    CAS  PubMed  Google Scholar 

  63. De Lean A, Munson PJ, Rodbard D (1978): Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay and physiological dose- response curves. Am J Physiol 235: E97–El02.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Graham, D., Langer, S.Z. (1990). 5-Hydroxytryptamine transport systems. In: Saxena, P.R., Wallis, D.I., Wouters, W., Bevan, P. (eds) Cardiovascular Pharmacology of 5-Hydroxytryptamine. Developments in CardioCardiovascular Pharmacology of 5-Hydroxytryptamine, vol 106. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0479-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0479-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6701-0

  • Online ISBN: 978-94-009-0479-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics